Files
neovim/src/nvim/event/process.c
Justin M. Keyes 6186df3562 event/multiqueue.c: Rename "queue" to "multiqueue".
`lib/queue.h` implements a basic queue. `event/queue.c` implements
a specialized data structure on top of lib/queue.h; it is not a "normal"
queue.

Rename the specialized multi-level queue implemented in event/queue.c to
"multiqueue", to avoid confusion when reading the code.

Before this change one can eventually notice that "macros (uppercase
symbols) are for the normal queue, lowercase operations are for the
multi-level queue", but that is unnecessary friction for new developers
(or existing developers just visiting this part of the codebase).
2016-10-02 00:24:49 +02:00

416 lines
12 KiB
C

#include <assert.h>
#include <stdlib.h>
#include <uv.h>
#include "nvim/os/shell.h"
#include "nvim/event/loop.h"
#include "nvim/event/rstream.h"
#include "nvim/event/wstream.h"
#include "nvim/event/process.h"
#include "nvim/event/libuv_process.h"
#include "nvim/os/pty_process.h"
#include "nvim/globals.h"
#include "nvim/log.h"
#ifdef INCLUDE_GENERATED_DECLARATIONS
# include "event/process.c.generated.h"
#endif
// Time (ns) for a process to exit cleanly before we send TERM/KILL.
#define TERM_TIMEOUT 1000000000
#define KILL_TIMEOUT (TERM_TIMEOUT * 2)
#define CLOSE_PROC_STREAM(proc, stream) \
do { \
if (proc->stream && !proc->stream->closed) { \
stream_close(proc->stream, NULL, NULL); \
} \
} while (0)
static bool process_is_tearing_down = false;
bool process_spawn(Process *proc) FUNC_ATTR_NONNULL_ALL
{
if (proc->in) {
uv_pipe_init(&proc->loop->uv, &proc->in->uv.pipe, 0);
}
if (proc->out) {
uv_pipe_init(&proc->loop->uv, &proc->out->uv.pipe, 0);
}
if (proc->err) {
uv_pipe_init(&proc->loop->uv, &proc->err->uv.pipe, 0);
}
bool success;
switch (proc->type) {
case kProcessTypeUv:
success = libuv_process_spawn((LibuvProcess *)proc);
break;
case kProcessTypePty:
success = pty_process_spawn((PtyProcess *)proc);
break;
default:
abort();
}
if (!success) {
if (proc->in) {
uv_close((uv_handle_t *)&proc->in->uv.pipe, NULL);
}
if (proc->out) {
uv_close((uv_handle_t *)&proc->out->uv.pipe, NULL);
}
if (proc->err) {
uv_close((uv_handle_t *)&proc->err->uv.pipe, NULL);
}
if (proc->type == kProcessTypeUv) {
uv_close((uv_handle_t *)&(((LibuvProcess *)proc)->uv), NULL);
} else {
process_close(proc);
}
shell_free_argv(proc->argv);
proc->status = -1;
return false;
}
if (proc->in) {
stream_init(NULL, proc->in, -1, (uv_stream_t *)&proc->in->uv.pipe);
proc->in->events = proc->events;
proc->in->internal_data = proc;
proc->in->internal_close_cb = on_process_stream_close;
proc->refcount++;
}
if (proc->out) {
stream_init(NULL, proc->out, -1, (uv_stream_t *)&proc->out->uv.pipe);
proc->out->events = proc->events;
proc->out->internal_data = proc;
proc->out->internal_close_cb = on_process_stream_close;
proc->refcount++;
}
if (proc->err) {
stream_init(NULL, proc->err, -1, (uv_stream_t *)&proc->err->uv.pipe);
proc->err->events = proc->events;
proc->err->internal_data = proc;
proc->err->internal_close_cb = on_process_stream_close;
proc->refcount++;
}
proc->internal_exit_cb = on_process_exit;
proc->internal_close_cb = decref;
proc->refcount++;
kl_push(WatcherPtr, proc->loop->children, proc);
return true;
}
void process_teardown(Loop *loop) FUNC_ATTR_NONNULL_ALL
{
process_is_tearing_down = true;
kl_iter(WatcherPtr, loop->children, current) {
Process *proc = (*current)->data;
if (proc->detach || proc->type == kProcessTypePty) {
// Close handles to process without killing it.
CREATE_EVENT(loop->events, process_close_handles, 1, proc);
} else {
uv_kill(proc->pid, SIGTERM);
proc->term_sent = true;
process_stop(proc);
}
}
// Wait until all children exit and all close events are processed.
LOOP_PROCESS_EVENTS_UNTIL(
loop, loop->events, -1,
kl_empty(loop->children) && multiqueue_empty(loop->events));
pty_process_teardown(loop);
}
// Wrappers around `stream_close` that protect against double-closing.
void process_close_streams(Process *proc) FUNC_ATTR_NONNULL_ALL
{
process_close_in(proc);
process_close_out(proc);
process_close_err(proc);
}
void process_close_in(Process *proc) FUNC_ATTR_NONNULL_ALL
{
CLOSE_PROC_STREAM(proc, in);
}
void process_close_out(Process *proc) FUNC_ATTR_NONNULL_ALL
{
CLOSE_PROC_STREAM(proc, out);
}
void process_close_err(Process *proc) FUNC_ATTR_NONNULL_ALL
{
CLOSE_PROC_STREAM(proc, err);
}
/// Synchronously wait for a process to finish
///
/// @param process The Process instance
/// @param ms Number of milliseconds to wait, 0 for not waiting, -1 for
/// waiting until the process quits.
/// @return returns the status code of the exited process. -1 if the process is
/// still running and the `timeout` has expired. Note that this is
/// indistinguishable from the process returning -1 by itself. Which
/// is possible on some OS. Returns -2 if an user has interruped the
/// wait.
int process_wait(Process *proc, int ms, MultiQueue *events)
FUNC_ATTR_NONNULL_ARG(1)
{
// The default status is -1, which represents a timeout
int status = -1;
bool interrupted = false;
if (!proc->refcount) {
LOOP_PROCESS_EVENTS(proc->loop, proc->events, 0);
return proc->status;
}
if (!events) {
events = proc->events;
}
// Increase refcount to stop the exit callback from being called(and possibly
// being freed) before we have a chance to get the status.
proc->refcount++;
LOOP_PROCESS_EVENTS_UNTIL(proc->loop, events, ms,
// Until...
got_int // interrupted by the user
|| proc->refcount == 1); // job exited
// we'll assume that a user frantically hitting interrupt doesn't like
// the current job. Signal that it has to be killed.
if (got_int) {
interrupted = true;
got_int = false;
process_stop(proc);
if (ms == -1) {
// We can only return if all streams/handles are closed and the job
// exited.
LOOP_PROCESS_EVENTS_UNTIL(proc->loop, events, -1,
proc->refcount == 1);
} else {
LOOP_PROCESS_EVENTS(proc->loop, events, 0);
}
}
if (proc->refcount == 1) {
// Job exited, collect status and manually invoke close_cb to free the job
// resources
status = interrupted ? -2 : proc->status;
decref(proc);
if (events) {
// the decref call created an exit event, process it now
multiqueue_process_events(events);
}
} else {
proc->refcount--;
}
return status;
}
/// Ask a process to terminate and eventually kill if it doesn't respond
void process_stop(Process *proc) FUNC_ATTR_NONNULL_ALL
{
if (proc->stopped_time) {
return;
}
proc->stopped_time = os_hrtime();
switch (proc->type) {
case kProcessTypeUv:
// Close the process's stdin. If the process doesn't close its own
// stdout/stderr, they will be closed when it exits(possibly due to being
// terminated after a timeout)
process_close_in(proc);
break;
case kProcessTypePty:
// close all streams for pty processes to send SIGHUP to the process
process_close_streams(proc);
pty_process_close_master((PtyProcess *)proc);
break;
default:
abort();
}
Loop *loop = proc->loop;
if (!loop->children_stop_requests++) {
// When there's at least one stop request pending, start a timer that
// will periodically check if a signal should be send to a to the job
DLOG("Starting job kill timer");
uv_timer_start(&loop->children_kill_timer, children_kill_cb, 100, 100);
}
}
/// Iterates the process list sending SIGTERM to stopped processes and SIGKILL
/// to those that didn't die from SIGTERM after a while(exit_timeout is 0).
static void children_kill_cb(uv_timer_t *handle)
{
Loop *loop = handle->loop->data;
uint64_t now = os_hrtime();
kl_iter(WatcherPtr, loop->children, current) {
Process *proc = (*current)->data;
if (!proc->stopped_time) {
continue;
}
uint64_t elapsed = now - proc->stopped_time;
if (!proc->term_sent && elapsed >= TERM_TIMEOUT) {
ILOG("Sending SIGTERM to pid %d", proc->pid);
uv_kill(proc->pid, SIGTERM);
proc->term_sent = true;
} else if (elapsed >= KILL_TIMEOUT) {
ILOG("Sending SIGKILL to pid %d", proc->pid);
uv_kill(proc->pid, SIGKILL);
}
}
}
static void process_close_event(void **argv)
{
Process *proc = argv[0];
shell_free_argv(proc->argv);
if (proc->type == kProcessTypePty) {
xfree(((PtyProcess *)proc)->term_name);
}
if (proc->cb) {
proc->cb(proc, proc->status, proc->data);
}
}
static void decref(Process *proc)
{
if (--proc->refcount != 0) {
return;
}
Loop *loop = proc->loop;
kliter_t(WatcherPtr) **node = NULL;
kl_iter(WatcherPtr, loop->children, current) {
if ((*current)->data == proc) {
node = current;
break;
}
}
assert(node);
kl_shift_at(WatcherPtr, loop->children, node);
CREATE_EVENT(proc->events, process_close_event, 1, proc);
}
static void process_close(Process *proc)
FUNC_ATTR_NONNULL_ARG(1)
{
if (process_is_tearing_down && (proc->detach || proc->type == kProcessTypePty)
&& proc->closed) {
// If a detached/pty process dies while tearing down it might get closed
// twice.
return;
}
assert(!proc->closed);
proc->closed = true;
switch (proc->type) {
case kProcessTypeUv:
libuv_process_close((LibuvProcess *)proc);
break;
case kProcessTypePty:
pty_process_close((PtyProcess *)proc);
break;
default:
abort();
}
}
/// Flush output stream.
///
/// @param proc Process, for which an output stream should be flushed.
/// @param stream Stream to flush.
static void flush_stream(Process *proc, Stream *stream)
FUNC_ATTR_NONNULL_ARG(1)
{
if (!stream || stream->closed) {
return;
}
// Maximal remaining data size of terminated process is system
// buffer size.
// Also helps with a child process that keeps the output streams open. If it
// keeps sending data, we only accept as much data as the system buffer size.
// Otherwise this would block cleanup/teardown.
int system_buffer_size = 0;
int err = uv_recv_buffer_size((uv_handle_t *)&stream->uv.pipe,
&system_buffer_size);
if (err) {
system_buffer_size = (int)rbuffer_capacity(stream->buffer);
}
size_t max_bytes = stream->num_bytes + (size_t)system_buffer_size;
// Read remaining data.
while (!stream->closed && stream->num_bytes < max_bytes) {
// Remember number of bytes before polling
size_t num_bytes = stream->num_bytes;
// Poll for data and process the generated events.
loop_poll_events(proc->loop, 0);
if (proc->events) {
multiqueue_process_events(proc->events);
}
// Stream can be closed if it is empty.
if (num_bytes == stream->num_bytes) {
if (stream->read_cb) {
// Stream callback could miss EOF handling if a child keeps the stream
// open.
stream->read_cb(stream, stream->buffer, 0, stream->cb_data, true);
}
break;
}
}
}
static void process_close_handles(void **argv)
{
Process *proc = argv[0];
flush_stream(proc, proc->out);
flush_stream(proc, proc->err);
process_close_streams(proc);
process_close(proc);
}
static void on_process_exit(Process *proc)
{
Loop *loop = proc->loop;
if (proc->stopped_time && loop->children_stop_requests
&& !--loop->children_stop_requests) {
// Stop the timer if no more stop requests are pending
DLOG("Stopping process kill timer");
uv_timer_stop(&loop->children_kill_timer);
}
// Process has terminated, but there could still be data to be read from the
// OS. We are still in the libuv loop, so we cannot call code that polls for
// more data directly. Instead delay the reading after the libuv loop by
// queueing process_close_handles() as an event.
MultiQueue *queue = proc->events ? proc->events : loop->events;
CREATE_EVENT(queue, process_close_handles, 1, proc);
}
static void on_process_stream_close(Stream *stream, void *data)
{
Process *proc = data;
decref(proc);
}