mirror of
https://github.com/neovim/neovim.git
synced 2026-02-20 01:09:56 +10:00
Problem: Style: typos found
Solution: correct them
(zeertzjq)
closes: vim/vim#14023
e71022082d
16079 lines
438 KiB
C
16079 lines
438 KiB
C
// Handling of regular expressions: vim_regcomp(), vim_regexec(), vim_regsub()
|
|
|
|
// By default: do not create debugging logs or files related to regular
|
|
// expressions, even when compiling with -DDEBUG.
|
|
// Uncomment the second line to get the regexp debugging.
|
|
// #undef REGEXP_DEBUG
|
|
// #define REGEXP_DEBUG
|
|
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <inttypes.h>
|
|
#include <limits.h>
|
|
#include <stdbool.h>
|
|
#include <stddef.h>
|
|
#include <string.h>
|
|
#include <uv.h>
|
|
|
|
#include "nvim/ascii_defs.h"
|
|
#include "nvim/buffer_defs.h"
|
|
#include "nvim/charset.h"
|
|
#include "nvim/eval.h"
|
|
#include "nvim/eval/typval.h"
|
|
#include "nvim/eval/userfunc.h"
|
|
#include "nvim/garray.h"
|
|
#include "nvim/garray_defs.h"
|
|
#include "nvim/gettext_defs.h"
|
|
#include "nvim/globals.h"
|
|
#include "nvim/keycodes.h"
|
|
#include "nvim/macros_defs.h"
|
|
#include "nvim/mark.h"
|
|
#include "nvim/mark_defs.h"
|
|
#include "nvim/mbyte.h"
|
|
#include "nvim/mbyte_defs.h"
|
|
#include "nvim/memline.h"
|
|
#include "nvim/memory.h"
|
|
#include "nvim/message.h"
|
|
#include "nvim/option_vars.h"
|
|
#include "nvim/os/input.h"
|
|
#include "nvim/plines.h"
|
|
#include "nvim/pos_defs.h"
|
|
#include "nvim/profile.h"
|
|
#include "nvim/regexp.h"
|
|
#include "nvim/regexp_defs.h"
|
|
#include "nvim/strings.h"
|
|
#include "nvim/types_defs.h"
|
|
#include "nvim/vim_defs.h"
|
|
|
|
enum {
|
|
/// In the NFA engine: how many braces are allowed.
|
|
/// TODO(RE): Use dynamic memory allocation instead of static, like here
|
|
NFA_MAX_BRACES = 20,
|
|
};
|
|
|
|
enum {
|
|
/// In the NFA engine: how many states are allowed.
|
|
NFA_MAX_STATES = 100000,
|
|
NFA_TOO_EXPENSIVE = -1,
|
|
};
|
|
|
|
/// Which regexp engine to use? Needed for vim_regcomp().
|
|
/// Must match with 'regexpengine'.
|
|
enum {
|
|
AUTOMATIC_ENGINE = 0,
|
|
BACKTRACKING_ENGINE = 1,
|
|
NFA_ENGINE = 2,
|
|
};
|
|
|
|
/// Structure returned by vim_regcomp() to pass on to vim_regexec().
|
|
/// This is the general structure. For the actual matcher, two specific
|
|
/// structures are used. See code below.
|
|
struct regprog {
|
|
regengine_T *engine;
|
|
unsigned regflags;
|
|
unsigned re_engine; ///< Automatic, backtracking or NFA engine.
|
|
unsigned re_flags; ///< Second argument for vim_regcomp().
|
|
bool re_in_use; ///< prog is being executed
|
|
};
|
|
|
|
/// Structure used by the back track matcher.
|
|
/// These fields are only to be used in regexp.c!
|
|
/// See regexp.c for an explanation.
|
|
typedef struct {
|
|
// These four members implement regprog_T.
|
|
regengine_T *engine;
|
|
unsigned regflags;
|
|
unsigned re_engine;
|
|
unsigned re_flags;
|
|
bool re_in_use;
|
|
|
|
int regstart;
|
|
uint8_t reganch;
|
|
uint8_t *regmust;
|
|
int regmlen;
|
|
uint8_t reghasz;
|
|
uint8_t program[];
|
|
} bt_regprog_T;
|
|
|
|
/// Structure representing a NFA state.
|
|
/// An NFA state may have no outgoing edge, when it is a NFA_MATCH state.
|
|
typedef struct nfa_state nfa_state_T;
|
|
struct nfa_state {
|
|
int c;
|
|
nfa_state_T *out;
|
|
nfa_state_T *out1;
|
|
int id;
|
|
int lastlist[2]; ///< 0: normal, 1: recursive
|
|
int val;
|
|
};
|
|
|
|
/// Structure used by the NFA matcher.
|
|
typedef struct {
|
|
// These four members implement regprog_T.
|
|
regengine_T *engine;
|
|
unsigned regflags;
|
|
unsigned re_engine;
|
|
unsigned re_flags;
|
|
bool re_in_use;
|
|
|
|
nfa_state_T *start; ///< points into state[]
|
|
|
|
int reganch; ///< pattern starts with ^
|
|
int regstart; ///< char at start of pattern
|
|
uint8_t *match_text; ///< plain text to match with
|
|
|
|
int has_zend; ///< pattern contains \ze
|
|
int has_backref; ///< pattern contains \1 .. \9
|
|
int reghasz;
|
|
char *pattern;
|
|
int nsubexp; ///< number of ()
|
|
int nstate;
|
|
nfa_state_T state[];
|
|
} nfa_regprog_T;
|
|
|
|
struct regengine {
|
|
/// bt_regcomp or nfa_regcomp
|
|
regprog_T *(*regcomp)(uint8_t *, int);
|
|
/// bt_regfree or nfa_regfree
|
|
void (*regfree)(regprog_T *);
|
|
/// bt_regexec_nl or nfa_regexec_nl
|
|
int (*regexec_nl)(regmatch_T *, uint8_t *, colnr_T, bool);
|
|
/// bt_regexec_mult or nfa_regexec_mult
|
|
int (*regexec_multi)(regmmatch_T *, win_T *, buf_T *, linenr_T, colnr_T, proftime_T *, int *);
|
|
#ifdef REGEXP_DEBUG
|
|
uint8_t *expr;
|
|
#endif
|
|
};
|
|
|
|
// Structure used to save the current input state, when it needs to be
|
|
// restored after trying a match. Used by reg_save() and reg_restore().
|
|
// Also stores the length of "backpos".
|
|
typedef struct {
|
|
union {
|
|
uint8_t *ptr; // rex.input pointer, for single-line regexp
|
|
lpos_T pos; // rex.input pos, for multi-line regexp
|
|
} rs_u;
|
|
int rs_len;
|
|
} regsave_T;
|
|
|
|
// struct to save start/end pointer/position in for \(\)
|
|
typedef struct {
|
|
union {
|
|
uint8_t *ptr;
|
|
lpos_T pos;
|
|
} se_u;
|
|
} save_se_T;
|
|
|
|
// Values for rs_state in regitem_T.
|
|
typedef enum regstate_E {
|
|
RS_NOPEN = 0, // NOPEN and NCLOSE
|
|
RS_MOPEN, // MOPEN + [0-9]
|
|
RS_MCLOSE, // MCLOSE + [0-9]
|
|
RS_ZOPEN, // ZOPEN + [0-9]
|
|
RS_ZCLOSE, // ZCLOSE + [0-9]
|
|
RS_BRANCH, // BRANCH
|
|
RS_BRCPLX_MORE, // BRACE_COMPLEX and trying one more match
|
|
RS_BRCPLX_LONG, // BRACE_COMPLEX and trying longest match
|
|
RS_BRCPLX_SHORT, // BRACE_COMPLEX and trying shortest match
|
|
RS_NOMATCH, // NOMATCH
|
|
RS_BEHIND1, // BEHIND / NOBEHIND matching rest
|
|
RS_BEHIND2, // BEHIND / NOBEHIND matching behind part
|
|
RS_STAR_LONG, // STAR/PLUS/BRACE_SIMPLE longest match
|
|
RS_STAR_SHORT, // STAR/PLUS/BRACE_SIMPLE shortest match
|
|
} regstate_T;
|
|
|
|
// When there are alternatives a regstate_T is put on the regstack to remember
|
|
// what we are doing.
|
|
// Before it may be another type of item, depending on rs_state, to remember
|
|
// more things.
|
|
typedef struct regitem_S {
|
|
regstate_T rs_state; // what we are doing, one of RS_ above
|
|
int16_t rs_no; // submatch nr or BEHIND/NOBEHIND
|
|
uint8_t *rs_scan; // current node in program
|
|
union {
|
|
save_se_T sesave;
|
|
regsave_T regsave;
|
|
} rs_un; // room for saving rex.input
|
|
} regitem_T;
|
|
|
|
// used for BEHIND and NOBEHIND matching
|
|
typedef struct regbehind_S {
|
|
regsave_T save_after;
|
|
regsave_T save_behind;
|
|
int save_need_clear_subexpr;
|
|
save_se_T save_start[NSUBEXP];
|
|
save_se_T save_end[NSUBEXP];
|
|
} regbehind_T;
|
|
|
|
// Since the out pointers in the list are always
|
|
// uninitialized, we use the pointers themselves
|
|
// as storage for the Ptrlists.
|
|
typedef union Ptrlist Ptrlist;
|
|
union Ptrlist {
|
|
Ptrlist *next;
|
|
nfa_state_T *s;
|
|
};
|
|
|
|
struct Frag {
|
|
nfa_state_T *start;
|
|
Ptrlist *out;
|
|
};
|
|
typedef struct Frag Frag_T;
|
|
|
|
typedef struct {
|
|
int in_use; ///< number of subexpr with useful info
|
|
|
|
// When REG_MULTI is true list.multi is used, otherwise list.line.
|
|
union {
|
|
struct multipos {
|
|
linenr_T start_lnum;
|
|
linenr_T end_lnum;
|
|
colnr_T start_col;
|
|
colnr_T end_col;
|
|
} multi[NSUBEXP];
|
|
struct linepos {
|
|
uint8_t *start;
|
|
uint8_t *end;
|
|
} line[NSUBEXP];
|
|
} list;
|
|
colnr_T orig_start_col; // list.multi[0].start_col without \zs
|
|
} regsub_T;
|
|
|
|
typedef struct {
|
|
regsub_T norm; // \( .. \) matches
|
|
regsub_T synt; // \z( .. \) matches
|
|
} regsubs_T;
|
|
|
|
// nfa_pim_T stores a Postponed Invisible Match.
|
|
typedef struct nfa_pim_S nfa_pim_T;
|
|
struct nfa_pim_S {
|
|
int result; // NFA_PIM_*, see below
|
|
nfa_state_T *state; // the invisible match start state
|
|
regsubs_T subs; // submatch info, only party used
|
|
union {
|
|
lpos_T pos;
|
|
uint8_t *ptr;
|
|
} end; // where the match must end
|
|
};
|
|
|
|
// nfa_thread_T contains execution information of a NFA state
|
|
typedef struct {
|
|
nfa_state_T *state;
|
|
int count;
|
|
nfa_pim_T pim; // if pim.result != NFA_PIM_UNUSED: postponed
|
|
// invisible match
|
|
regsubs_T subs; // submatch info, only party used
|
|
} nfa_thread_T;
|
|
|
|
// nfa_list_T contains the alternative NFA execution states.
|
|
typedef struct {
|
|
nfa_thread_T *t; ///< allocated array of states
|
|
int n; ///< nr of states currently in "t"
|
|
int len; ///< max nr of states in "t"
|
|
int id; ///< ID of the list
|
|
int has_pim; ///< true when any state has a PIM
|
|
} nfa_list_T;
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
// show/save debugging data when BT engine is used
|
|
# define BT_REGEXP_DUMP
|
|
// save the debugging data to a file instead of displaying it
|
|
# define BT_REGEXP_LOG
|
|
# define BT_REGEXP_DEBUG_LOG
|
|
# define BT_REGEXP_DEBUG_LOG_NAME "bt_regexp_debug.log"
|
|
#endif
|
|
|
|
// Magic characters have a special meaning, they don't match literally.
|
|
// Magic characters are negative. This separates them from literal characters
|
|
// (possibly multi-byte). Only ASCII characters can be Magic.
|
|
#define Magic(x) ((int)(x) - 256)
|
|
#define un_Magic(x) ((x) + 256)
|
|
#define is_Magic(x) ((x) < 0)
|
|
|
|
typedef void (*fptr_T)(int *, int);
|
|
|
|
static int no_Magic(int x)
|
|
{
|
|
if (is_Magic(x)) {
|
|
return un_Magic(x);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
static int toggle_Magic(int x)
|
|
{
|
|
if (is_Magic(x)) {
|
|
return un_Magic(x);
|
|
}
|
|
return Magic(x);
|
|
}
|
|
|
|
// The first byte of the BT regexp internal "program" is actually this magic
|
|
// number; the start node begins in the second byte. It's used to catch the
|
|
// most severe mutilation of the program by the caller.
|
|
#define REGMAGIC 0234
|
|
|
|
// Utility definitions.
|
|
#define UCHARAT(p) ((int)(*(uint8_t *)(p)))
|
|
|
|
// Used for an error (down from) vim_regcomp(): give the error message, set
|
|
// rc_did_emsg and return NULL
|
|
#define EMSG_RET_NULL(m) return (emsg(m), rc_did_emsg = true, (void *)NULL)
|
|
#define IEMSG_RET_NULL(m) return (iemsg(m), rc_did_emsg = true, (void *)NULL)
|
|
#define EMSG_RET_FAIL(m) return (emsg(m), rc_did_emsg = true, FAIL)
|
|
#define EMSG2_RET_NULL(m, c) \
|
|
return (semsg((m), (c) ? "" : "\\"), rc_did_emsg = true, (void *)NULL)
|
|
#define EMSG3_RET_NULL(m, c, a) \
|
|
return (semsg((m), (c) ? "" : "\\", (a)), rc_did_emsg = true, (void *)NULL)
|
|
#define EMSG2_RET_FAIL(m, c) \
|
|
return (semsg((m), (c) ? "" : "\\"), rc_did_emsg = true, FAIL)
|
|
#define EMSG_ONE_RET_NULL EMSG2_RET_NULL(_(e_invalid_item_in_str_brackets), reg_magic == MAGIC_ALL)
|
|
|
|
#define MAX_LIMIT (32767 << 16)
|
|
|
|
static const char e_invalid_character_after_str_at[]
|
|
= N_("E59: Invalid character after %s@");
|
|
static const char e_invalid_use_of_underscore[]
|
|
= N_("E63: Invalid use of \\_");
|
|
static const char e_pattern_uses_more_memory_than_maxmempattern[]
|
|
= N_("E363: Pattern uses more memory than 'maxmempattern'");
|
|
static const char e_invalid_item_in_str_brackets[]
|
|
= N_("E369: Invalid item in %s%%[]");
|
|
static const char e_missing_delimiter_after_search_pattern_str[]
|
|
= N_("E654: Missing delimiter after search pattern: %s");
|
|
static const char e_missingbracket[] = N_("E769: Missing ] after %s[");
|
|
static const char e_reverse_range[] = N_("E944: Reverse range in character class");
|
|
static const char e_large_class[] = N_("E945: Range too large in character class");
|
|
static const char e_unmatchedpp[] = N_("E53: Unmatched %s%%(");
|
|
static const char e_unmatchedp[] = N_("E54: Unmatched %s(");
|
|
static const char e_unmatchedpar[] = N_("E55: Unmatched %s)");
|
|
static const char e_z_not_allowed[] = N_("E66: \\z( not allowed here");
|
|
static const char e_z1_not_allowed[] = N_("E67: \\z1 - \\z9 not allowed here");
|
|
static const char e_missing_sb[] = N_("E69: Missing ] after %s%%[");
|
|
static const char e_empty_sb[] = N_("E70: Empty %s%%[]");
|
|
static const char e_recursive[] = N_("E956: Cannot use pattern recursively");
|
|
static const char e_regexp_number_after_dot_pos_search_chr[]
|
|
= N_("E1204: No Number allowed after .: '\\%%%c'");
|
|
static const char e_nfa_regexp_missing_value_in_chr[]
|
|
= N_("E1273: (NFA regexp) missing value in '\\%%%c'");
|
|
static const char e_atom_engine_must_be_at_start_of_pattern[]
|
|
= N_("E1281: Atom '\\%%#=%c' must be at the start of the pattern");
|
|
static const char e_substitute_nesting_too_deep[] = N_("E1290: substitute nesting too deep");
|
|
|
|
#define NOT_MULTI 0
|
|
#define MULTI_ONE 1
|
|
#define MULTI_MULT 2
|
|
|
|
// return values for regmatch()
|
|
#define RA_FAIL 1 // something failed, abort
|
|
#define RA_CONT 2 // continue in inner loop
|
|
#define RA_BREAK 3 // break inner loop
|
|
#define RA_MATCH 4 // successful match
|
|
#define RA_NOMATCH 5 // didn't match
|
|
|
|
/// Return NOT_MULTI if c is not a "multi" operator.
|
|
/// Return MULTI_ONE if c is a single "multi" operator.
|
|
/// Return MULTI_MULT if c is a multi "multi" operator.
|
|
static int re_multi_type(int c)
|
|
{
|
|
if (c == Magic('@') || c == Magic('=') || c == Magic('?')) {
|
|
return MULTI_ONE;
|
|
}
|
|
if (c == Magic('*') || c == Magic('+') || c == Magic('{')) {
|
|
return MULTI_MULT;
|
|
}
|
|
return NOT_MULTI;
|
|
}
|
|
|
|
static char *reg_prev_sub = NULL;
|
|
|
|
// REGEXP_INRANGE contains all characters which are always special in a []
|
|
// range after '\'.
|
|
// REGEXP_ABBR contains all characters which act as abbreviations after '\'.
|
|
// These are:
|
|
// \n - New line (NL).
|
|
// \r - Carriage Return (CR).
|
|
// \t - Tab (TAB).
|
|
// \e - Escape (ESC).
|
|
// \b - Backspace (Ctrl_H).
|
|
// \d - Character code in decimal, eg \d123
|
|
// \o - Character code in octal, eg \o80
|
|
// \x - Character code in hex, eg \x4a
|
|
// \u - Multibyte character code, eg \u20ac
|
|
// \U - Long multibyte character code, eg \U12345678
|
|
static char REGEXP_INRANGE[] = "]^-n\\";
|
|
static char REGEXP_ABBR[] = "nrtebdoxuU";
|
|
|
|
// Translate '\x' to its control character, except "\n", which is Magic.
|
|
static int backslash_trans(int c)
|
|
{
|
|
switch (c) {
|
|
case 'r':
|
|
return CAR;
|
|
case 't':
|
|
return TAB;
|
|
case 'e':
|
|
return ESC;
|
|
case 'b':
|
|
return BS;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
/// Check for a character class name "[:name:]". "pp" points to the '['.
|
|
/// Returns one of the CLASS_ items. CLASS_NONE means that no item was
|
|
/// recognized. Otherwise "pp" is advanced to after the item.
|
|
static int get_char_class(char **pp)
|
|
{
|
|
static const char *(class_names[]) = {
|
|
"alnum:]",
|
|
#define CLASS_ALNUM 0
|
|
"alpha:]",
|
|
#define CLASS_ALPHA 1
|
|
"blank:]",
|
|
#define CLASS_BLANK 2
|
|
"cntrl:]",
|
|
#define CLASS_CNTRL 3
|
|
"digit:]",
|
|
#define CLASS_DIGIT 4
|
|
"graph:]",
|
|
#define CLASS_GRAPH 5
|
|
"lower:]",
|
|
#define CLASS_LOWER 6
|
|
"print:]",
|
|
#define CLASS_PRINT 7
|
|
"punct:]",
|
|
#define CLASS_PUNCT 8
|
|
"space:]",
|
|
#define CLASS_SPACE 9
|
|
"upper:]",
|
|
#define CLASS_UPPER 10
|
|
"xdigit:]",
|
|
#define CLASS_XDIGIT 11
|
|
"tab:]",
|
|
#define CLASS_TAB 12
|
|
"return:]",
|
|
#define CLASS_RETURN 13
|
|
"backspace:]",
|
|
#define CLASS_BACKSPACE 14
|
|
"escape:]",
|
|
#define CLASS_ESCAPE 15
|
|
"ident:]",
|
|
#define CLASS_IDENT 16
|
|
"keyword:]",
|
|
#define CLASS_KEYWORD 17
|
|
"fname:]",
|
|
#define CLASS_FNAME 18
|
|
};
|
|
#define CLASS_NONE 99
|
|
int i;
|
|
|
|
if ((*pp)[1] == ':') {
|
|
for (i = 0; i < (int)ARRAY_SIZE(class_names); i++) {
|
|
if (strncmp(*pp + 2, class_names[i], strlen(class_names[i])) == 0) {
|
|
*pp += strlen(class_names[i]) + 2;
|
|
return i;
|
|
}
|
|
}
|
|
}
|
|
return CLASS_NONE;
|
|
}
|
|
|
|
// Specific version of character class functions.
|
|
// Using a table to keep this fast.
|
|
static int16_t class_tab[256];
|
|
|
|
#define RI_DIGIT 0x01
|
|
#define RI_HEX 0x02
|
|
#define RI_OCTAL 0x04
|
|
#define RI_WORD 0x08
|
|
#define RI_HEAD 0x10
|
|
#define RI_ALPHA 0x20
|
|
#define RI_LOWER 0x40
|
|
#define RI_UPPER 0x80
|
|
#define RI_WHITE 0x100
|
|
|
|
static void init_class_tab(void)
|
|
{
|
|
int i;
|
|
static int done = false;
|
|
|
|
if (done) {
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
if (i >= '0' && i <= '7') {
|
|
class_tab[i] = RI_DIGIT + RI_HEX + RI_OCTAL + RI_WORD;
|
|
} else if (i >= '8' && i <= '9') {
|
|
class_tab[i] = RI_DIGIT + RI_HEX + RI_WORD;
|
|
} else if (i >= 'a' && i <= 'f') {
|
|
class_tab[i] = RI_HEX + RI_WORD + RI_HEAD + RI_ALPHA + RI_LOWER;
|
|
} else if (i >= 'g' && i <= 'z') {
|
|
class_tab[i] = RI_WORD + RI_HEAD + RI_ALPHA + RI_LOWER;
|
|
} else if (i >= 'A' && i <= 'F') {
|
|
class_tab[i] = RI_HEX + RI_WORD + RI_HEAD + RI_ALPHA + RI_UPPER;
|
|
} else if (i >= 'G' && i <= 'Z') {
|
|
class_tab[i] = RI_WORD + RI_HEAD + RI_ALPHA + RI_UPPER;
|
|
} else if (i == '_') {
|
|
class_tab[i] = RI_WORD + RI_HEAD;
|
|
} else {
|
|
class_tab[i] = 0;
|
|
}
|
|
}
|
|
class_tab[' '] |= RI_WHITE;
|
|
class_tab['\t'] |= RI_WHITE;
|
|
done = true;
|
|
}
|
|
|
|
#define ri_digit(c) ((c) < 0x100 && (class_tab[c] & RI_DIGIT))
|
|
#define ri_hex(c) ((c) < 0x100 && (class_tab[c] & RI_HEX))
|
|
#define ri_octal(c) ((c) < 0x100 && (class_tab[c] & RI_OCTAL))
|
|
#define ri_word(c) ((c) < 0x100 && (class_tab[c] & RI_WORD))
|
|
#define ri_head(c) ((c) < 0x100 && (class_tab[c] & RI_HEAD))
|
|
#define ri_alpha(c) ((c) < 0x100 && (class_tab[c] & RI_ALPHA))
|
|
#define ri_lower(c) ((c) < 0x100 && (class_tab[c] & RI_LOWER))
|
|
#define ri_upper(c) ((c) < 0x100 && (class_tab[c] & RI_UPPER))
|
|
#define ri_white(c) ((c) < 0x100 && (class_tab[c] & RI_WHITE))
|
|
|
|
// flags for regflags
|
|
#define RF_ICASE 1 // ignore case
|
|
#define RF_NOICASE 2 // don't ignore case
|
|
#define RF_HASNL 4 // can match a NL
|
|
#define RF_ICOMBINE 8 // ignore combining characters
|
|
#define RF_LOOKBH 16 // uses "\@<=" or "\@<!"
|
|
|
|
// Global work variables for vim_regcomp().
|
|
|
|
static char *regparse; ///< Input-scan pointer.
|
|
static int regnpar; ///< () count.
|
|
static bool wants_nfa; ///< regex should use NFA engine
|
|
static int regnzpar; ///< \z() count.
|
|
static int re_has_z; ///< \z item detected
|
|
static unsigned regflags; ///< RF_ flags for prog
|
|
static int had_eol; ///< true when EOL found by vim_regcomp()
|
|
|
|
static magic_T reg_magic; ///< magicness of the pattern
|
|
|
|
static int reg_string; // matching with a string instead of a buffer
|
|
// line
|
|
static int reg_strict; // "[abc" is illegal
|
|
|
|
// META contains all characters that may be magic, except '^' and '$'.
|
|
|
|
// uncrustify:off
|
|
|
|
// META[] is used often enough to justify turning it into a table.
|
|
static uint8_t META_flags[] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
// % & ( ) * + .
|
|
0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0,
|
|
// 1 2 3 4 5 6 7 8 9 < = > ?
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1,
|
|
// @ A C D F H I K L M O
|
|
1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1,
|
|
// P S U V W X Z [ _
|
|
1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1,
|
|
// a c d f h i k l m n o
|
|
0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
|
|
// p s u v w x z { | ~
|
|
1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1
|
|
};
|
|
|
|
// uncrustify:on
|
|
|
|
static int curchr; // currently parsed character
|
|
// Previous character. Note: prevchr is sometimes -1 when we are not at the
|
|
// start, eg in /[ ^I]^ the pattern was never found even if it existed,
|
|
// because ^ was taken to be magic -- webb
|
|
static int prevchr;
|
|
static int prevprevchr; // previous-previous character
|
|
static int nextchr; // used for ungetchr()
|
|
|
|
// arguments for reg()
|
|
#define REG_NOPAREN 0 // toplevel reg()
|
|
#define REG_PAREN 1 // \(\)
|
|
#define REG_ZPAREN 2 // \z(\)
|
|
#define REG_NPAREN 3 // \%(\)
|
|
|
|
typedef struct {
|
|
char *regparse;
|
|
int prevchr_len;
|
|
int curchr;
|
|
int prevchr;
|
|
int prevprevchr;
|
|
int nextchr;
|
|
int at_start;
|
|
int prev_at_start;
|
|
int regnpar;
|
|
} parse_state_T;
|
|
|
|
static regengine_T bt_regengine;
|
|
static regengine_T nfa_regengine;
|
|
|
|
#ifdef INCLUDE_GENERATED_DECLARATIONS
|
|
# include "regexp.c.generated.h"
|
|
#endif
|
|
|
|
// Return true if compiled regular expression "prog" can match a line break.
|
|
int re_multiline(const regprog_T *prog)
|
|
FUNC_ATTR_NONNULL_ALL
|
|
{
|
|
return prog->regflags & RF_HASNL;
|
|
}
|
|
|
|
// Check for an equivalence class name "[=a=]". "pp" points to the '['.
|
|
// Returns a character representing the class. Zero means that no item was
|
|
// recognized. Otherwise "pp" is advanced to after the item.
|
|
static int get_equi_class(char **pp)
|
|
{
|
|
int c;
|
|
int l = 1;
|
|
char *p = *pp;
|
|
|
|
if (p[1] == '=' && p[2] != NUL) {
|
|
l = utfc_ptr2len(p + 2);
|
|
if (p[l + 2] == '=' && p[l + 3] == ']') {
|
|
c = utf_ptr2char(p + 2);
|
|
*pp += l + 4;
|
|
return c;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Check for a collating element "[.a.]". "pp" points to the '['.
|
|
// Returns a character. Zero means that no item was recognized. Otherwise
|
|
// "pp" is advanced to after the item.
|
|
// Currently only single characters are recognized!
|
|
static int get_coll_element(char **pp)
|
|
{
|
|
int c;
|
|
int l = 1;
|
|
char *p = *pp;
|
|
|
|
if (p[0] != NUL && p[1] == '.' && p[2] != NUL) {
|
|
l = utfc_ptr2len(p + 2);
|
|
if (p[l + 2] == '.' && p[l + 3] == ']') {
|
|
c = utf_ptr2char(p + 2);
|
|
*pp += l + 4;
|
|
return c;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int reg_cpo_lit; // 'cpoptions' contains 'l' flag
|
|
|
|
static void get_cpo_flags(void)
|
|
{
|
|
reg_cpo_lit = vim_strchr(p_cpo, CPO_LITERAL) != NULL;
|
|
}
|
|
|
|
/// Skip over a "[]" range.
|
|
/// "p" must point to the character after the '['.
|
|
/// The returned pointer is on the matching ']', or the terminating NUL.
|
|
static char *skip_anyof(char *p)
|
|
{
|
|
int l;
|
|
|
|
if (*p == '^') { // Complement of range.
|
|
p++;
|
|
}
|
|
if (*p == ']' || *p == '-') {
|
|
p++;
|
|
}
|
|
while (*p != NUL && *p != ']') {
|
|
if ((l = utfc_ptr2len(p)) > 1) {
|
|
p += l;
|
|
} else if (*p == '-') {
|
|
p++;
|
|
if (*p != ']' && *p != NUL) {
|
|
MB_PTR_ADV(p);
|
|
}
|
|
} else if (*p == '\\'
|
|
&& (vim_strchr(REGEXP_INRANGE, (uint8_t)p[1]) != NULL
|
|
|| (!reg_cpo_lit
|
|
&& vim_strchr(REGEXP_ABBR, (uint8_t)p[1]) != NULL))) {
|
|
p += 2;
|
|
} else if (*p == '[') {
|
|
if (get_char_class(&p) == CLASS_NONE
|
|
&& get_equi_class(&p) == 0
|
|
&& get_coll_element(&p) == 0
|
|
&& *p != NUL) {
|
|
p++; // It is not a class name and not NUL
|
|
}
|
|
} else {
|
|
p++;
|
|
}
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
/// Skip past regular expression.
|
|
/// Stop at end of "startp" or where "delim" is found ('/', '?', etc).
|
|
/// Take care of characters with a backslash in front of it.
|
|
/// Skip strings inside [ and ].
|
|
char *skip_regexp(char *startp, int delim, int magic)
|
|
{
|
|
return skip_regexp_ex(startp, delim, magic, NULL, NULL, NULL);
|
|
}
|
|
|
|
/// Call skip_regexp() and when the delimiter does not match give an error and
|
|
/// return NULL.
|
|
char *skip_regexp_err(char *startp, int delim, int magic)
|
|
{
|
|
char *p = skip_regexp(startp, delim, magic);
|
|
|
|
if (*p != delim) {
|
|
semsg(_(e_missing_delimiter_after_search_pattern_str), startp);
|
|
return NULL;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/// skip_regexp() with extra arguments:
|
|
/// When "newp" is not NULL and "dirc" is '?', make an allocated copy of the
|
|
/// expression and change "\?" to "?". If "*newp" is not NULL the expression
|
|
/// is changed in-place.
|
|
/// If a "\?" is changed to "?" then "dropped" is incremented, unless NULL.
|
|
/// If "magic_val" is not NULL, returns the effective magicness of the pattern
|
|
char *skip_regexp_ex(char *startp, int dirc, int magic, char **newp, int *dropped,
|
|
magic_T *magic_val)
|
|
{
|
|
magic_T mymagic;
|
|
char *p = startp;
|
|
|
|
if (magic) {
|
|
mymagic = MAGIC_ON;
|
|
} else {
|
|
mymagic = MAGIC_OFF;
|
|
}
|
|
get_cpo_flags();
|
|
|
|
for (; p[0] != NUL; MB_PTR_ADV(p)) {
|
|
if (p[0] == dirc) { // found end of regexp
|
|
break;
|
|
}
|
|
if ((p[0] == '[' && mymagic >= MAGIC_ON)
|
|
|| (p[0] == '\\' && p[1] == '[' && mymagic <= MAGIC_OFF)) {
|
|
p = skip_anyof(p + 1);
|
|
if (p[0] == NUL) {
|
|
break;
|
|
}
|
|
} else if (p[0] == '\\' && p[1] != NUL) {
|
|
if (dirc == '?' && newp != NULL && p[1] == '?') {
|
|
// change "\?" to "?", make a copy first.
|
|
if (*newp == NULL) {
|
|
*newp = xstrdup(startp);
|
|
p = *newp + (p - startp);
|
|
}
|
|
if (dropped != NULL) {
|
|
(*dropped)++;
|
|
}
|
|
STRMOVE(p, p + 1);
|
|
} else {
|
|
p++; // skip next character
|
|
}
|
|
if (*p == 'v') {
|
|
mymagic = MAGIC_ALL;
|
|
} else if (*p == 'V') {
|
|
mymagic = MAGIC_NONE;
|
|
}
|
|
}
|
|
}
|
|
if (magic_val != NULL) {
|
|
*magic_val = mymagic;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
// variables used for parsing
|
|
static int prevchr_len; // byte length of previous char
|
|
static int at_start; // True when on the first character
|
|
static int prev_at_start; // True when on the second character
|
|
|
|
// Start parsing at "str".
|
|
static void initchr(char *str)
|
|
{
|
|
regparse = str;
|
|
prevchr_len = 0;
|
|
curchr = prevprevchr = prevchr = nextchr = -1;
|
|
at_start = true;
|
|
prev_at_start = false;
|
|
}
|
|
|
|
// Save the current parse state, so that it can be restored and parsing
|
|
// starts in the same state again.
|
|
static void save_parse_state(parse_state_T *ps)
|
|
{
|
|
ps->regparse = regparse;
|
|
ps->prevchr_len = prevchr_len;
|
|
ps->curchr = curchr;
|
|
ps->prevchr = prevchr;
|
|
ps->prevprevchr = prevprevchr;
|
|
ps->nextchr = nextchr;
|
|
ps->at_start = at_start;
|
|
ps->prev_at_start = prev_at_start;
|
|
ps->regnpar = regnpar;
|
|
}
|
|
|
|
// Restore a previously saved parse state.
|
|
static void restore_parse_state(parse_state_T *ps)
|
|
{
|
|
regparse = ps->regparse;
|
|
prevchr_len = ps->prevchr_len;
|
|
curchr = ps->curchr;
|
|
prevchr = ps->prevchr;
|
|
prevprevchr = ps->prevprevchr;
|
|
nextchr = ps->nextchr;
|
|
at_start = ps->at_start;
|
|
prev_at_start = ps->prev_at_start;
|
|
regnpar = ps->regnpar;
|
|
}
|
|
|
|
// Get the next character without advancing.
|
|
static int peekchr(void)
|
|
{
|
|
static int after_slash = false;
|
|
|
|
if (curchr != -1) {
|
|
return curchr;
|
|
}
|
|
|
|
switch (curchr = (uint8_t)regparse[0]) {
|
|
case '.':
|
|
case '[':
|
|
case '~':
|
|
// magic when 'magic' is on
|
|
if (reg_magic >= MAGIC_ON) {
|
|
curchr = Magic(curchr);
|
|
}
|
|
break;
|
|
case '(':
|
|
case ')':
|
|
case '{':
|
|
case '%':
|
|
case '+':
|
|
case '=':
|
|
case '?':
|
|
case '@':
|
|
case '!':
|
|
case '&':
|
|
case '|':
|
|
case '<':
|
|
case '>':
|
|
case '#': // future ext.
|
|
case '"': // future ext.
|
|
case '\'': // future ext.
|
|
case ',': // future ext.
|
|
case '-': // future ext.
|
|
case ':': // future ext.
|
|
case ';': // future ext.
|
|
case '`': // future ext.
|
|
case '/': // Can't be used in / command
|
|
// magic only after "\v"
|
|
if (reg_magic == MAGIC_ALL) {
|
|
curchr = Magic(curchr);
|
|
}
|
|
break;
|
|
case '*':
|
|
// * is not magic as the very first character, eg "?*ptr", when
|
|
// after '^', eg "/^*ptr" and when after "\(", "\|", "\&". But
|
|
// "\(\*" is not magic, thus must be magic if "after_slash"
|
|
if (reg_magic >= MAGIC_ON
|
|
&& !at_start
|
|
&& !(prev_at_start && prevchr == Magic('^'))
|
|
&& (after_slash
|
|
|| (prevchr != Magic('(')
|
|
&& prevchr != Magic('&')
|
|
&& prevchr != Magic('|')))) {
|
|
curchr = Magic('*');
|
|
}
|
|
break;
|
|
case '^':
|
|
// '^' is only magic as the very first character and if it's after
|
|
// "\(", "\|", "\&' or "\n"
|
|
if (reg_magic >= MAGIC_OFF
|
|
&& (at_start
|
|
|| reg_magic == MAGIC_ALL
|
|
|| prevchr == Magic('(')
|
|
|| prevchr == Magic('|')
|
|
|| prevchr == Magic('&')
|
|
|| prevchr == Magic('n')
|
|
|| (no_Magic(prevchr) == '('
|
|
&& prevprevchr == Magic('%')))) {
|
|
curchr = Magic('^');
|
|
at_start = true;
|
|
prev_at_start = false;
|
|
}
|
|
break;
|
|
case '$':
|
|
// '$' is only magic as the very last char and if it's in front of
|
|
// either "\|", "\)", "\&", or "\n"
|
|
if (reg_magic >= MAGIC_OFF) {
|
|
uint8_t *p = (uint8_t *)regparse + 1;
|
|
bool is_magic_all = (reg_magic == MAGIC_ALL);
|
|
|
|
// ignore \c \C \m \M \v \V and \Z after '$'
|
|
while (p[0] == '\\' && (p[1] == 'c' || p[1] == 'C'
|
|
|| p[1] == 'm' || p[1] == 'M'
|
|
|| p[1] == 'v' || p[1] == 'V'
|
|
|| p[1] == 'Z')) {
|
|
if (p[1] == 'v') {
|
|
is_magic_all = true;
|
|
} else if (p[1] == 'm' || p[1] == 'M' || p[1] == 'V') {
|
|
is_magic_all = false;
|
|
}
|
|
p += 2;
|
|
}
|
|
if (p[0] == NUL
|
|
|| (p[0] == '\\'
|
|
&& (p[1] == '|' || p[1] == '&' || p[1] == ')'
|
|
|| p[1] == 'n'))
|
|
|| (is_magic_all
|
|
&& (p[0] == '|' || p[0] == '&' || p[0] == ')'))
|
|
|| reg_magic == MAGIC_ALL) {
|
|
curchr = Magic('$');
|
|
}
|
|
}
|
|
break;
|
|
case '\\': {
|
|
int c = (uint8_t)regparse[1];
|
|
|
|
if (c == NUL) {
|
|
curchr = '\\'; // trailing '\'
|
|
} else if (c <= '~' && META_flags[c]) {
|
|
// META contains everything that may be magic sometimes,
|
|
// except ^ and $ ("\^" and "\$" are only magic after
|
|
// "\V"). We now fetch the next character and toggle its
|
|
// magicness. Therefore, \ is so meta-magic that it is
|
|
// not in META.
|
|
curchr = -1;
|
|
prev_at_start = at_start;
|
|
at_start = false; // be able to say "/\*ptr"
|
|
regparse++;
|
|
after_slash++;
|
|
(void)peekchr();
|
|
regparse--;
|
|
after_slash--;
|
|
curchr = toggle_Magic(curchr);
|
|
} else if (vim_strchr(REGEXP_ABBR, c)) {
|
|
// Handle abbreviations, like "\t" for TAB -- webb
|
|
curchr = backslash_trans(c);
|
|
} else if (reg_magic == MAGIC_NONE && (c == '$' || c == '^')) {
|
|
curchr = toggle_Magic(c);
|
|
} else {
|
|
// Next character can never be (made) magic?
|
|
// Then backslashing it won't do anything.
|
|
curchr = utf_ptr2char(regparse + 1);
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
curchr = utf_ptr2char(regparse);
|
|
}
|
|
|
|
return curchr;
|
|
}
|
|
|
|
// Eat one lexed character. Do this in a way that we can undo it.
|
|
static void skipchr(void)
|
|
{
|
|
// peekchr() eats a backslash, do the same here
|
|
if (*regparse == '\\') {
|
|
prevchr_len = 1;
|
|
} else {
|
|
prevchr_len = 0;
|
|
}
|
|
if (regparse[prevchr_len] != NUL) {
|
|
// Exclude composing chars that utfc_ptr2len does include.
|
|
prevchr_len += utf_ptr2len(regparse + prevchr_len);
|
|
}
|
|
regparse += prevchr_len;
|
|
prev_at_start = at_start;
|
|
at_start = false;
|
|
prevprevchr = prevchr;
|
|
prevchr = curchr;
|
|
curchr = nextchr; // use previously unget char, or -1
|
|
nextchr = -1;
|
|
}
|
|
|
|
// Skip a character while keeping the value of prev_at_start for at_start.
|
|
// prevchr and prevprevchr are also kept.
|
|
static void skipchr_keepstart(void)
|
|
{
|
|
int as = prev_at_start;
|
|
int pr = prevchr;
|
|
int prpr = prevprevchr;
|
|
|
|
skipchr();
|
|
at_start = as;
|
|
prevchr = pr;
|
|
prevprevchr = prpr;
|
|
}
|
|
|
|
// Get the next character from the pattern. We know about magic and such, so
|
|
// therefore we need a lexical analyzer.
|
|
static int getchr(void)
|
|
{
|
|
int chr = peekchr();
|
|
|
|
skipchr();
|
|
return chr;
|
|
}
|
|
|
|
// put character back. Works only once!
|
|
static void ungetchr(void)
|
|
{
|
|
nextchr = curchr;
|
|
curchr = prevchr;
|
|
prevchr = prevprevchr;
|
|
at_start = prev_at_start;
|
|
prev_at_start = false;
|
|
|
|
// Backup regparse, so that it's at the same position as before the
|
|
// getchr().
|
|
regparse -= prevchr_len;
|
|
}
|
|
|
|
// Get and return the value of the hex string at the current position.
|
|
// Return -1 if there is no valid hex number.
|
|
// The position is updated:
|
|
// blahblah\%x20asdf
|
|
// before-^ ^-after
|
|
// The parameter controls the maximum number of input characters. This will be
|
|
// 2 when reading a \%x20 sequence and 4 when reading a \%u20AC sequence.
|
|
static int64_t gethexchrs(int maxinputlen)
|
|
{
|
|
int64_t nr = 0;
|
|
int c;
|
|
int i;
|
|
|
|
for (i = 0; i < maxinputlen; i++) {
|
|
c = (uint8_t)regparse[0];
|
|
if (!ascii_isxdigit(c)) {
|
|
break;
|
|
}
|
|
nr <<= 4;
|
|
nr |= hex2nr(c);
|
|
regparse++;
|
|
}
|
|
|
|
if (i == 0) {
|
|
return -1;
|
|
}
|
|
return nr;
|
|
}
|
|
|
|
// Get and return the value of the decimal string immediately after the
|
|
// current position. Return -1 for invalid. Consumes all digits.
|
|
static int64_t getdecchrs(void)
|
|
{
|
|
int64_t nr = 0;
|
|
int c;
|
|
int i;
|
|
|
|
for (i = 0;; i++) {
|
|
c = (uint8_t)regparse[0];
|
|
if (c < '0' || c > '9') {
|
|
break;
|
|
}
|
|
nr *= 10;
|
|
nr += c - '0';
|
|
regparse++;
|
|
curchr = -1; // no longer valid
|
|
}
|
|
|
|
if (i == 0) {
|
|
return -1;
|
|
}
|
|
return nr;
|
|
}
|
|
|
|
// get and return the value of the octal string immediately after the current
|
|
// position. Return -1 for invalid, or 0-255 for valid. Smart enough to handle
|
|
// numbers > 377 correctly (for example, 400 is treated as 40) and doesn't
|
|
// treat 8 or 9 as recognised characters. Position is updated:
|
|
// blahblah\%o210asdf
|
|
// before-^ ^-after
|
|
static int64_t getoctchrs(void)
|
|
{
|
|
int64_t nr = 0;
|
|
int c;
|
|
int i;
|
|
|
|
for (i = 0; i < 3 && nr < 040; i++) {
|
|
c = (uint8_t)regparse[0];
|
|
if (c < '0' || c > '7') {
|
|
break;
|
|
}
|
|
nr <<= 3;
|
|
nr |= hex2nr(c);
|
|
regparse++;
|
|
}
|
|
|
|
if (i == 0) {
|
|
return -1;
|
|
}
|
|
return nr;
|
|
}
|
|
|
|
// read_limits - Read two integers to be taken as a minimum and maximum.
|
|
// If the first character is '-', then the range is reversed.
|
|
// Should end with 'end'. If minval is missing, zero is default, if maxval is
|
|
// missing, a very big number is the default.
|
|
static int read_limits(int *minval, int *maxval)
|
|
{
|
|
int reverse = false;
|
|
char *first_char;
|
|
int tmp;
|
|
|
|
if (*regparse == '-') {
|
|
// Starts with '-', so reverse the range later.
|
|
regparse++;
|
|
reverse = true;
|
|
}
|
|
first_char = regparse;
|
|
*minval = getdigits_int(®parse, false, 0);
|
|
if (*regparse == ',') { // There is a comma.
|
|
if (ascii_isdigit(*++regparse)) {
|
|
*maxval = getdigits_int(®parse, false, MAX_LIMIT);
|
|
} else {
|
|
*maxval = MAX_LIMIT;
|
|
}
|
|
} else if (ascii_isdigit(*first_char)) {
|
|
*maxval = *minval; // It was \{n} or \{-n}
|
|
} else {
|
|
*maxval = MAX_LIMIT; // It was \{} or \{-}
|
|
}
|
|
if (*regparse == '\\') {
|
|
regparse++; // Allow either \{...} or \{...\}
|
|
}
|
|
if (*regparse != '}') {
|
|
EMSG2_RET_FAIL(_("E554: Syntax error in %s{...}"), reg_magic == MAGIC_ALL);
|
|
}
|
|
|
|
// Reverse the range if there was a '-', or make sure it is in the right
|
|
// order otherwise.
|
|
if ((!reverse && *minval > *maxval) || (reverse && *minval < *maxval)) {
|
|
tmp = *minval;
|
|
*minval = *maxval;
|
|
*maxval = tmp;
|
|
}
|
|
skipchr(); // let's be friends with the lexer again
|
|
return OK;
|
|
}
|
|
|
|
// vim_regexec and friends
|
|
|
|
// Global work variables for vim_regexec().
|
|
|
|
// Sometimes need to save a copy of a line. Since alloc()/free() is very
|
|
// slow, we keep one allocated piece of memory and only re-allocate it when
|
|
// it's too small. It's freed in bt_regexec_both() when finished.
|
|
static uint8_t *reg_tofree = NULL;
|
|
static unsigned reg_tofreelen;
|
|
|
|
// Structure used to store the execution state of the regex engine.
|
|
// Which ones are set depends on whether a single-line or multi-line match is
|
|
// done:
|
|
// single-line multi-line
|
|
// reg_match ®match_T NULL
|
|
// reg_mmatch NULL ®mmatch_T
|
|
// reg_startp reg_match->startp <invalid>
|
|
// reg_endp reg_match->endp <invalid>
|
|
// reg_startpos <invalid> reg_mmatch->startpos
|
|
// reg_endpos <invalid> reg_mmatch->endpos
|
|
// reg_win NULL window in which to search
|
|
// reg_buf curbuf buffer in which to search
|
|
// reg_firstlnum <invalid> first line in which to search
|
|
// reg_maxline 0 last line nr
|
|
// reg_line_lbr false or true false
|
|
typedef struct {
|
|
regmatch_T *reg_match;
|
|
regmmatch_T *reg_mmatch;
|
|
|
|
uint8_t **reg_startp;
|
|
uint8_t **reg_endp;
|
|
lpos_T *reg_startpos;
|
|
lpos_T *reg_endpos;
|
|
|
|
win_T *reg_win;
|
|
buf_T *reg_buf;
|
|
linenr_T reg_firstlnum;
|
|
linenr_T reg_maxline;
|
|
bool reg_line_lbr; // "\n" in string is line break
|
|
|
|
// The current match-position is remembered with these variables:
|
|
linenr_T lnum; ///< line number, relative to first line
|
|
uint8_t *line; ///< start of current line
|
|
uint8_t *input; ///< current input, points into "line"
|
|
|
|
int need_clear_subexpr; ///< subexpressions still need to be cleared
|
|
int need_clear_zsubexpr; ///< extmatch subexpressions still need to be
|
|
///< cleared
|
|
|
|
// Internal copy of 'ignorecase'. It is set at each call to vim_regexec().
|
|
// Normally it gets the value of "rm_ic" or "rmm_ic", but when the pattern
|
|
// contains '\c' or '\C' the value is overruled.
|
|
bool reg_ic;
|
|
|
|
// Similar to "reg_ic", but only for 'combining' characters. Set with \Z
|
|
// flag in the regexp. Defaults to false, always.
|
|
bool reg_icombine;
|
|
|
|
bool reg_nobreak;
|
|
|
|
// Copy of "rmm_maxcol": maximum column to search for a match. Zero when
|
|
// there is no maximum.
|
|
colnr_T reg_maxcol;
|
|
|
|
// State for the NFA engine regexec.
|
|
int nfa_has_zend; ///< NFA regexp \ze operator encountered.
|
|
int nfa_has_backref; ///< NFA regexp \1 .. \9 encountered.
|
|
int nfa_nsubexpr; ///< Number of sub expressions actually being used
|
|
///< during execution. 1 if only the whole match
|
|
///< (subexpr 0) is used.
|
|
// listid is global, so that it increases on recursive calls to
|
|
// nfa_regmatch(), which means we don't have to clear the lastlist field of
|
|
// all the states.
|
|
int nfa_listid;
|
|
int nfa_alt_listid;
|
|
|
|
int nfa_has_zsubexpr; ///< NFA regexp has \z( ), set zsubexpr.
|
|
} regexec_T;
|
|
|
|
static regexec_T rex;
|
|
static bool rex_in_use = false;
|
|
|
|
static void reg_breakcheck(void)
|
|
{
|
|
if (!rex.reg_nobreak) {
|
|
fast_breakcheck();
|
|
}
|
|
}
|
|
|
|
// Return true if character 'c' is included in 'iskeyword' option for
|
|
// "reg_buf" buffer.
|
|
static bool reg_iswordc(int c)
|
|
{
|
|
return vim_iswordc_buf(c, rex.reg_buf);
|
|
}
|
|
|
|
// Get pointer to the line "lnum", which is relative to "reg_firstlnum".
|
|
static char *reg_getline(linenr_T lnum)
|
|
{
|
|
// when looking behind for a match/no-match lnum is negative. But we
|
|
// can't go before line 1
|
|
if (rex.reg_firstlnum + lnum < 1) {
|
|
return NULL;
|
|
}
|
|
if (lnum > rex.reg_maxline) {
|
|
// Must have matched the "\n" in the last line.
|
|
return "";
|
|
}
|
|
return ml_get_buf(rex.reg_buf, rex.reg_firstlnum + lnum);
|
|
}
|
|
|
|
static uint8_t *reg_startzp[NSUBEXP]; // Workspace to mark beginning
|
|
static uint8_t *reg_endzp[NSUBEXP]; // and end of \z(...\) matches
|
|
static lpos_T reg_startzpos[NSUBEXP]; // idem, beginning pos
|
|
static lpos_T reg_endzpos[NSUBEXP]; // idem, end pos
|
|
|
|
// true if using multi-line regexp.
|
|
#define REG_MULTI (rex.reg_match == NULL)
|
|
|
|
// Create a new extmatch and mark it as referenced once.
|
|
static reg_extmatch_T *make_extmatch(void)
|
|
FUNC_ATTR_NONNULL_RET
|
|
{
|
|
reg_extmatch_T *em = xcalloc(1, sizeof(reg_extmatch_T));
|
|
em->refcnt = 1;
|
|
return em;
|
|
}
|
|
|
|
// Add a reference to an extmatch.
|
|
reg_extmatch_T *ref_extmatch(reg_extmatch_T *em)
|
|
{
|
|
if (em != NULL) {
|
|
em->refcnt++;
|
|
}
|
|
return em;
|
|
}
|
|
|
|
// Remove a reference to an extmatch. If there are no references left, free
|
|
// the info.
|
|
void unref_extmatch(reg_extmatch_T *em)
|
|
{
|
|
int i;
|
|
|
|
if (em != NULL && --em->refcnt <= 0) {
|
|
for (i = 0; i < NSUBEXP; i++) {
|
|
xfree(em->matches[i]);
|
|
}
|
|
xfree(em);
|
|
}
|
|
}
|
|
|
|
// Get class of previous character.
|
|
static int reg_prev_class(void)
|
|
{
|
|
if (rex.input > rex.line) {
|
|
return mb_get_class_tab((char *)rex.input - 1 -
|
|
utf_head_off((char *)rex.line, (char *)rex.input - 1),
|
|
rex.reg_buf->b_chartab);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
// Return true if the current rex.input position matches the Visual area.
|
|
static bool reg_match_visual(void)
|
|
{
|
|
pos_T top, bot;
|
|
linenr_T lnum;
|
|
colnr_T col;
|
|
win_T *wp = rex.reg_win == NULL ? curwin : rex.reg_win;
|
|
int mode;
|
|
colnr_T start, end;
|
|
colnr_T start2, end2;
|
|
colnr_T curswant;
|
|
|
|
// Check if the buffer is the current buffer and not using a string.
|
|
if (rex.reg_buf != curbuf || VIsual.lnum == 0 || !REG_MULTI) {
|
|
return false;
|
|
}
|
|
|
|
if (VIsual_active) {
|
|
if (lt(VIsual, wp->w_cursor)) {
|
|
top = VIsual;
|
|
bot = wp->w_cursor;
|
|
} else {
|
|
top = wp->w_cursor;
|
|
bot = VIsual;
|
|
}
|
|
mode = VIsual_mode;
|
|
curswant = wp->w_curswant;
|
|
} else {
|
|
if (lt(curbuf->b_visual.vi_start, curbuf->b_visual.vi_end)) {
|
|
top = curbuf->b_visual.vi_start;
|
|
bot = curbuf->b_visual.vi_end;
|
|
} else {
|
|
top = curbuf->b_visual.vi_end;
|
|
bot = curbuf->b_visual.vi_start;
|
|
}
|
|
// a substitute command may have removed some lines
|
|
if (bot.lnum > curbuf->b_ml.ml_line_count) {
|
|
bot.lnum = curbuf->b_ml.ml_line_count;
|
|
}
|
|
mode = curbuf->b_visual.vi_mode;
|
|
curswant = curbuf->b_visual.vi_curswant;
|
|
}
|
|
lnum = rex.lnum + rex.reg_firstlnum;
|
|
if (lnum < top.lnum || lnum > bot.lnum) {
|
|
return false;
|
|
}
|
|
|
|
col = (colnr_T)(rex.input - rex.line);
|
|
if (mode == 'v') {
|
|
if ((lnum == top.lnum && col < top.col)
|
|
|| (lnum == bot.lnum && col >= bot.col + (*p_sel != 'e'))) {
|
|
return false;
|
|
}
|
|
} else if (mode == Ctrl_V) {
|
|
getvvcol(wp, &top, &start, NULL, &end);
|
|
getvvcol(wp, &bot, &start2, NULL, &end2);
|
|
if (start2 < start) {
|
|
start = start2;
|
|
}
|
|
if (end2 > end) {
|
|
end = end2;
|
|
}
|
|
if (top.col == MAXCOL || bot.col == MAXCOL || curswant == MAXCOL) {
|
|
end = MAXCOL;
|
|
}
|
|
|
|
// getvvcol() flushes rex.line, need to get it again
|
|
rex.line = (uint8_t *)reg_getline(rex.lnum);
|
|
rex.input = rex.line + col;
|
|
|
|
colnr_T cols = win_linetabsize(wp, rex.reg_firstlnum + rex.lnum, (char *)rex.line, col);
|
|
if (cols < start || cols > end - (*p_sel == 'e')) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Check the regexp program for its magic number.
|
|
// Return true if it's wrong.
|
|
static int prog_magic_wrong(void)
|
|
{
|
|
regprog_T *prog;
|
|
|
|
prog = REG_MULTI ? rex.reg_mmatch->regprog : rex.reg_match->regprog;
|
|
if (prog->engine == &nfa_regengine) {
|
|
// For NFA matcher we don't check the magic
|
|
return false;
|
|
}
|
|
|
|
if (UCHARAT(((bt_regprog_T *)prog)->program) != REGMAGIC) {
|
|
emsg(_(e_re_corr));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Cleanup the subexpressions, if this wasn't done yet.
|
|
// This construction is used to clear the subexpressions only when they are
|
|
// used (to increase speed).
|
|
static void cleanup_subexpr(void)
|
|
{
|
|
if (!rex.need_clear_subexpr) {
|
|
return;
|
|
}
|
|
|
|
if (REG_MULTI) {
|
|
// Use 0xff to set lnum to -1
|
|
memset(rex.reg_startpos, 0xff, sizeof(lpos_T) * NSUBEXP);
|
|
memset(rex.reg_endpos, 0xff, sizeof(lpos_T) * NSUBEXP);
|
|
} else {
|
|
memset(rex.reg_startp, 0, sizeof(char *) * NSUBEXP);
|
|
memset(rex.reg_endp, 0, sizeof(char *) * NSUBEXP);
|
|
}
|
|
rex.need_clear_subexpr = false;
|
|
}
|
|
|
|
static void cleanup_zsubexpr(void)
|
|
{
|
|
if (!rex.need_clear_zsubexpr) {
|
|
return;
|
|
}
|
|
|
|
if (REG_MULTI) {
|
|
// Use 0xff to set lnum to -1
|
|
memset(reg_startzpos, 0xff, sizeof(lpos_T) * NSUBEXP);
|
|
memset(reg_endzpos, 0xff, sizeof(lpos_T) * NSUBEXP);
|
|
} else {
|
|
memset(reg_startzp, 0, sizeof(char *) * NSUBEXP);
|
|
memset(reg_endzp, 0, sizeof(char *) * NSUBEXP);
|
|
}
|
|
rex.need_clear_zsubexpr = false;
|
|
}
|
|
|
|
// Advance rex.lnum, rex.line and rex.input to the next line.
|
|
static void reg_nextline(void)
|
|
{
|
|
rex.line = (uint8_t *)reg_getline(++rex.lnum);
|
|
rex.input = rex.line;
|
|
reg_breakcheck();
|
|
}
|
|
|
|
// Check whether a backreference matches.
|
|
// Returns RA_FAIL, RA_NOMATCH or RA_MATCH.
|
|
// If "bytelen" is not NULL, it is set to the byte length of the match in the
|
|
// last line.
|
|
static int match_with_backref(linenr_T start_lnum, colnr_T start_col, linenr_T end_lnum,
|
|
colnr_T end_col, int *bytelen)
|
|
{
|
|
linenr_T clnum = start_lnum;
|
|
colnr_T ccol = start_col;
|
|
int len;
|
|
char *p;
|
|
|
|
if (bytelen != NULL) {
|
|
*bytelen = 0;
|
|
}
|
|
while (true) {
|
|
// Since getting one line may invalidate the other, need to make copy.
|
|
// Slow!
|
|
if (rex.line != reg_tofree) {
|
|
len = (int)strlen((char *)rex.line);
|
|
if (reg_tofree == NULL || len >= (int)reg_tofreelen) {
|
|
len += 50; // get some extra
|
|
xfree(reg_tofree);
|
|
reg_tofree = xmalloc((size_t)len);
|
|
reg_tofreelen = (unsigned)len;
|
|
}
|
|
STRCPY(reg_tofree, rex.line);
|
|
rex.input = reg_tofree + (rex.input - rex.line);
|
|
rex.line = reg_tofree;
|
|
}
|
|
|
|
// Get the line to compare with.
|
|
p = reg_getline(clnum);
|
|
assert(p);
|
|
|
|
if (clnum == end_lnum) {
|
|
len = end_col - ccol;
|
|
} else {
|
|
len = (int)strlen(p + ccol);
|
|
}
|
|
|
|
if (cstrncmp(p + ccol, (char *)rex.input, &len) != 0) {
|
|
return RA_NOMATCH; // doesn't match
|
|
}
|
|
if (bytelen != NULL) {
|
|
*bytelen += len;
|
|
}
|
|
if (clnum == end_lnum) {
|
|
break; // match and at end!
|
|
}
|
|
if (rex.lnum >= rex.reg_maxline) {
|
|
return RA_NOMATCH; // text too short
|
|
}
|
|
|
|
// Advance to next line.
|
|
reg_nextline();
|
|
if (bytelen != NULL) {
|
|
*bytelen = 0;
|
|
}
|
|
clnum++;
|
|
ccol = 0;
|
|
if (got_int) {
|
|
return RA_FAIL;
|
|
}
|
|
}
|
|
|
|
// found a match! Note that rex.line may now point to a copy of the line,
|
|
// that should not matter.
|
|
return RA_MATCH;
|
|
}
|
|
|
|
/// Used in a place where no * or \+ can follow.
|
|
static bool re_mult_next(char *what)
|
|
{
|
|
if (re_multi_type(peekchr()) == MULTI_MULT) {
|
|
semsg(_("E888: (NFA regexp) cannot repeat %s"), what);
|
|
rc_did_emsg = true;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
typedef struct {
|
|
int a, b, c;
|
|
} decomp_T;
|
|
|
|
// 0xfb20 - 0xfb4f
|
|
static decomp_T decomp_table[0xfb4f - 0xfb20 + 1] = {
|
|
{ 0x5e2, 0, 0 }, // 0xfb20 alt ayin
|
|
{ 0x5d0, 0, 0 }, // 0xfb21 alt alef
|
|
{ 0x5d3, 0, 0 }, // 0xfb22 alt dalet
|
|
{ 0x5d4, 0, 0 }, // 0xfb23 alt he
|
|
{ 0x5db, 0, 0 }, // 0xfb24 alt kaf
|
|
{ 0x5dc, 0, 0 }, // 0xfb25 alt lamed
|
|
{ 0x5dd, 0, 0 }, // 0xfb26 alt mem-sofit
|
|
{ 0x5e8, 0, 0 }, // 0xfb27 alt resh
|
|
{ 0x5ea, 0, 0 }, // 0xfb28 alt tav
|
|
{ '+', 0, 0 }, // 0xfb29 alt plus
|
|
{ 0x5e9, 0x5c1, 0 }, // 0xfb2a shin+shin-dot
|
|
{ 0x5e9, 0x5c2, 0 }, // 0xfb2b shin+sin-dot
|
|
{ 0x5e9, 0x5c1, 0x5bc }, // 0xfb2c shin+shin-dot+dagesh
|
|
{ 0x5e9, 0x5c2, 0x5bc }, // 0xfb2d shin+sin-dot+dagesh
|
|
{ 0x5d0, 0x5b7, 0 }, // 0xfb2e alef+patah
|
|
{ 0x5d0, 0x5b8, 0 }, // 0xfb2f alef+qamats
|
|
{ 0x5d0, 0x5b4, 0 }, // 0xfb30 alef+hiriq
|
|
{ 0x5d1, 0x5bc, 0 }, // 0xfb31 bet+dagesh
|
|
{ 0x5d2, 0x5bc, 0 }, // 0xfb32 gimel+dagesh
|
|
{ 0x5d3, 0x5bc, 0 }, // 0xfb33 dalet+dagesh
|
|
{ 0x5d4, 0x5bc, 0 }, // 0xfb34 he+dagesh
|
|
{ 0x5d5, 0x5bc, 0 }, // 0xfb35 vav+dagesh
|
|
{ 0x5d6, 0x5bc, 0 }, // 0xfb36 zayin+dagesh
|
|
{ 0xfb37, 0, 0 }, // 0xfb37 -- UNUSED
|
|
{ 0x5d8, 0x5bc, 0 }, // 0xfb38 tet+dagesh
|
|
{ 0x5d9, 0x5bc, 0 }, // 0xfb39 yud+dagesh
|
|
{ 0x5da, 0x5bc, 0 }, // 0xfb3a kaf sofit+dagesh
|
|
{ 0x5db, 0x5bc, 0 }, // 0xfb3b kaf+dagesh
|
|
{ 0x5dc, 0x5bc, 0 }, // 0xfb3c lamed+dagesh
|
|
{ 0xfb3d, 0, 0 }, // 0xfb3d -- UNUSED
|
|
{ 0x5de, 0x5bc, 0 }, // 0xfb3e mem+dagesh
|
|
{ 0xfb3f, 0, 0 }, // 0xfb3f -- UNUSED
|
|
{ 0x5e0, 0x5bc, 0 }, // 0xfb40 nun+dagesh
|
|
{ 0x5e1, 0x5bc, 0 }, // 0xfb41 samech+dagesh
|
|
{ 0xfb42, 0, 0 }, // 0xfb42 -- UNUSED
|
|
{ 0x5e3, 0x5bc, 0 }, // 0xfb43 pe sofit+dagesh
|
|
{ 0x5e4, 0x5bc, 0 }, // 0xfb44 pe+dagesh
|
|
{ 0xfb45, 0, 0 }, // 0xfb45 -- UNUSED
|
|
{ 0x5e6, 0x5bc, 0 }, // 0xfb46 tsadi+dagesh
|
|
{ 0x5e7, 0x5bc, 0 }, // 0xfb47 qof+dagesh
|
|
{ 0x5e8, 0x5bc, 0 }, // 0xfb48 resh+dagesh
|
|
{ 0x5e9, 0x5bc, 0 }, // 0xfb49 shin+dagesh
|
|
{ 0x5ea, 0x5bc, 0 }, // 0xfb4a tav+dagesh
|
|
{ 0x5d5, 0x5b9, 0 }, // 0xfb4b vav+holam
|
|
{ 0x5d1, 0x5bf, 0 }, // 0xfb4c bet+rafe
|
|
{ 0x5db, 0x5bf, 0 }, // 0xfb4d kaf+rafe
|
|
{ 0x5e4, 0x5bf, 0 }, // 0xfb4e pe+rafe
|
|
{ 0x5d0, 0x5dc, 0 } // 0xfb4f alef-lamed
|
|
};
|
|
|
|
static void mb_decompose(int c, int *c1, int *c2, int *c3)
|
|
{
|
|
decomp_T d;
|
|
|
|
if (c >= 0xfb20 && c <= 0xfb4f) {
|
|
d = decomp_table[c - 0xfb20];
|
|
*c1 = d.a;
|
|
*c2 = d.b;
|
|
*c3 = d.c;
|
|
} else {
|
|
*c1 = c;
|
|
*c2 = *c3 = 0;
|
|
}
|
|
}
|
|
|
|
/// Compare two strings, ignore case if rex.reg_ic set.
|
|
/// Return 0 if strings match, non-zero otherwise.
|
|
/// Correct the length "*n" when composing characters are ignored.
|
|
static int cstrncmp(char *s1, char *s2, int *n)
|
|
{
|
|
int result;
|
|
|
|
if (!rex.reg_ic) {
|
|
result = strncmp(s1, s2, (size_t)(*n));
|
|
} else {
|
|
assert(*n >= 0);
|
|
result = mb_strnicmp(s1, s2, (size_t)(*n));
|
|
}
|
|
|
|
// if it failed and it's utf8 and we want to combineignore:
|
|
if (result != 0 && rex.reg_icombine) {
|
|
const char *str1, *str2;
|
|
int c1, c2, c11, c12;
|
|
int junk;
|
|
|
|
// we have to handle the strcmp ourselves, since it is necessary to
|
|
// deal with the composing characters by ignoring them:
|
|
str1 = s1;
|
|
str2 = s2;
|
|
c1 = c2 = 0;
|
|
while ((int)(str1 - s1) < *n) {
|
|
c1 = mb_ptr2char_adv(&str1);
|
|
c2 = mb_ptr2char_adv(&str2);
|
|
|
|
// decompose the character if necessary, into 'base' characters
|
|
// because I don't care about Arabic, I will hard-code the Hebrew
|
|
// which I *do* care about! So sue me...
|
|
if (c1 != c2 && (!rex.reg_ic || utf_fold(c1) != utf_fold(c2))) {
|
|
// decomposition necessary?
|
|
mb_decompose(c1, &c11, &junk, &junk);
|
|
mb_decompose(c2, &c12, &junk, &junk);
|
|
c1 = c11;
|
|
c2 = c12;
|
|
if (c11 != c12 && (!rex.reg_ic || utf_fold(c11) != utf_fold(c12))) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
result = c2 - c1;
|
|
if (result == 0) {
|
|
*n = (int)(str2 - s2);
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/// Wrapper around strchr which accounts for case-insensitive searches and
|
|
/// non-ASCII characters.
|
|
///
|
|
/// This function is used a lot for simple searches, keep it fast!
|
|
///
|
|
/// @param s string to search
|
|
/// @param c character to find in @a s
|
|
///
|
|
/// @return NULL if no match, otherwise pointer to the position in @a s
|
|
static inline char *cstrchr(const char *const s, const int c)
|
|
FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL
|
|
FUNC_ATTR_ALWAYS_INLINE
|
|
{
|
|
if (!rex.reg_ic) {
|
|
return vim_strchr(s, c);
|
|
}
|
|
|
|
// Use folded case for UTF-8, slow! For ASCII use libc strpbrk which is
|
|
// expected to be highly optimized.
|
|
if (c > 0x80) {
|
|
const int folded_c = utf_fold(c);
|
|
for (const char *p = s; *p != NUL; p += utfc_ptr2len(p)) {
|
|
if (utf_fold(utf_ptr2char(p)) == folded_c) {
|
|
return (char *)p;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
int cc;
|
|
if (ASCII_ISUPPER(c)) {
|
|
cc = TOLOWER_ASC(c);
|
|
} else if (ASCII_ISLOWER(c)) {
|
|
cc = TOUPPER_ASC(c);
|
|
} else {
|
|
return vim_strchr(s, c);
|
|
}
|
|
|
|
char tofind[] = { (char)c, (char)cc, NUL };
|
|
return strpbrk(s, tofind);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////
|
|
// regsub stuff //
|
|
////////////////////////////////////////////////////////////////
|
|
|
|
static void do_upper(int *d, int c)
|
|
{
|
|
*d = mb_toupper(c);
|
|
}
|
|
|
|
static void do_lower(int *d, int c)
|
|
{
|
|
*d = mb_tolower(c);
|
|
}
|
|
|
|
/// regtilde(): Replace tildes in the pattern by the old pattern.
|
|
///
|
|
/// Short explanation of the tilde: It stands for the previous replacement
|
|
/// pattern. If that previous pattern also contains a ~ we should go back a
|
|
/// step further... But we insert the previous pattern into the current one
|
|
/// and remember that.
|
|
/// This still does not handle the case where "magic" changes. So require the
|
|
/// user to keep his hands off of "magic".
|
|
///
|
|
/// The tildes are parsed once before the first call to vim_regsub().
|
|
char *regtilde(char *source, int magic, bool preview)
|
|
{
|
|
char *newsub = source;
|
|
|
|
for (char *p = newsub; *p; p++) {
|
|
if ((*p == '~' && magic) || (*p == '\\' && *(p + 1) == '~' && !magic)) {
|
|
if (reg_prev_sub != NULL) {
|
|
// length = len(newsub) - 1 + len(prev_sub) + 1
|
|
// Avoid making the text longer than MAXCOL, it will cause
|
|
// trouble at some point.
|
|
size_t prevsublen = strlen(reg_prev_sub);
|
|
size_t newsublen = strlen(newsub);
|
|
if (prevsublen > MAXCOL || newsublen > MAXCOL
|
|
|| newsublen + prevsublen > MAXCOL) {
|
|
emsg(_(e_resulting_text_too_long));
|
|
break;
|
|
}
|
|
|
|
char *tmpsub = xmalloc(newsublen + prevsublen);
|
|
// copy prefix
|
|
size_t prefixlen = (size_t)(p - newsub); // not including ~
|
|
memmove(tmpsub, newsub, prefixlen);
|
|
// interpret tilde
|
|
memmove(tmpsub + prefixlen, reg_prev_sub, prevsublen);
|
|
// copy postfix
|
|
if (!magic) {
|
|
p++; // back off backslash
|
|
}
|
|
STRCPY(tmpsub + prefixlen + prevsublen, p + 1);
|
|
|
|
if (newsub != source) { // allocated newsub before
|
|
xfree(newsub);
|
|
}
|
|
newsub = tmpsub;
|
|
p = newsub + prefixlen + prevsublen;
|
|
} else if (magic) {
|
|
STRMOVE(p, p + 1); // remove '~'
|
|
} else {
|
|
STRMOVE(p, p + 2); // remove '\~'
|
|
}
|
|
p--;
|
|
} else {
|
|
if (*p == '\\' && p[1]) { // skip escaped characters
|
|
p++;
|
|
}
|
|
p += utfc_ptr2len(p) - 1;
|
|
}
|
|
}
|
|
|
|
// Only change reg_prev_sub when not previewing.
|
|
if (!preview) {
|
|
// Store a copy of newsub in reg_prev_sub. It is always allocated,
|
|
// because recursive calls may make the returned string invalid.
|
|
xfree(reg_prev_sub);
|
|
reg_prev_sub = xstrdup(newsub);
|
|
}
|
|
|
|
return newsub;
|
|
}
|
|
|
|
static bool can_f_submatch = false; // true when submatch() can be used
|
|
|
|
// These pointers are used for reg_submatch(). Needed for when the
|
|
// substitution string is an expression that contains a call to substitute()
|
|
// and submatch().
|
|
typedef struct {
|
|
regmatch_T *sm_match;
|
|
regmmatch_T *sm_mmatch;
|
|
linenr_T sm_firstlnum;
|
|
linenr_T sm_maxline;
|
|
int sm_line_lbr;
|
|
} regsubmatch_T;
|
|
|
|
static regsubmatch_T rsm; // can only be used when can_f_submatch is true
|
|
|
|
/// Put the submatches in "argv[argskip]" which is a list passed into
|
|
/// call_func() by vim_regsub_both().
|
|
static int fill_submatch_list(int argc FUNC_ATTR_UNUSED, typval_T *argv, int argskip, ufunc_T *fp)
|
|
FUNC_ATTR_NONNULL_ALL
|
|
{
|
|
typval_T *listarg = argv + argskip;
|
|
|
|
if (!fp->uf_varargs && fp->uf_args.ga_len <= argskip) {
|
|
// called function doesn't take a submatches argument
|
|
return argskip;
|
|
}
|
|
|
|
// Relies on sl_list to be the first item in staticList10_T.
|
|
tv_list_init_static10((staticList10_T *)listarg->vval.v_list);
|
|
|
|
// There are always 10 list items in staticList10_T.
|
|
listitem_T *li = tv_list_first(listarg->vval.v_list);
|
|
for (int i = 0; i < 10; i++) {
|
|
char *s = rsm.sm_match->startp[i];
|
|
if (s == NULL || rsm.sm_match->endp[i] == NULL) {
|
|
s = NULL;
|
|
} else {
|
|
s = xstrnsave(s, (size_t)(rsm.sm_match->endp[i] - s));
|
|
}
|
|
TV_LIST_ITEM_TV(li)->v_type = VAR_STRING;
|
|
TV_LIST_ITEM_TV(li)->vval.v_string = s;
|
|
li = TV_LIST_ITEM_NEXT(argv->vval.v_list, li);
|
|
}
|
|
return argskip + 1;
|
|
}
|
|
|
|
static void clear_submatch_list(staticList10_T *sl)
|
|
{
|
|
TV_LIST_ITER(&sl->sl_list, li, {
|
|
xfree(TV_LIST_ITEM_TV(li)->vval.v_string);
|
|
});
|
|
}
|
|
|
|
/// vim_regsub() - perform substitutions after a vim_regexec() or
|
|
/// vim_regexec_multi() match.
|
|
///
|
|
/// If "flags" has REGSUB_COPY really copy into "dest[destlen]".
|
|
/// Otherwise nothing is copied, only compute the length of the result.
|
|
///
|
|
/// If "flags" has REGSUB_MAGIC then behave like 'magic' is set.
|
|
///
|
|
/// If "flags" has REGSUB_BACKSLASH a backslash will be removed later, need to
|
|
/// double them to keep them, and insert a backslash before a CR to avoid it
|
|
/// being replaced with a line break later.
|
|
///
|
|
/// Note: The matched text must not change between the call of
|
|
/// vim_regexec()/vim_regexec_multi() and vim_regsub()! It would make the back
|
|
/// references invalid!
|
|
///
|
|
/// Returns the size of the replacement, including terminating NUL.
|
|
int vim_regsub(regmatch_T *rmp, char *source, typval_T *expr, char *dest, int destlen, int flags)
|
|
{
|
|
regexec_T rex_save;
|
|
bool rex_in_use_save = rex_in_use;
|
|
|
|
if (rex_in_use) {
|
|
// Being called recursively, save the state.
|
|
rex_save = rex;
|
|
}
|
|
rex_in_use = true;
|
|
|
|
rex.reg_match = rmp;
|
|
rex.reg_mmatch = NULL;
|
|
rex.reg_maxline = 0;
|
|
rex.reg_buf = curbuf;
|
|
rex.reg_line_lbr = true;
|
|
int result = vim_regsub_both(source, expr, dest, destlen, flags);
|
|
|
|
rex_in_use = rex_in_use_save;
|
|
if (rex_in_use) {
|
|
rex = rex_save;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
int vim_regsub_multi(regmmatch_T *rmp, linenr_T lnum, char *source, char *dest, int destlen,
|
|
int flags)
|
|
{
|
|
regexec_T rex_save;
|
|
bool rex_in_use_save = rex_in_use;
|
|
|
|
if (rex_in_use) {
|
|
// Being called recursively, save the state.
|
|
rex_save = rex;
|
|
}
|
|
rex_in_use = true;
|
|
|
|
rex.reg_match = NULL;
|
|
rex.reg_mmatch = rmp;
|
|
rex.reg_buf = curbuf; // always works on the current buffer!
|
|
rex.reg_firstlnum = lnum;
|
|
rex.reg_maxline = curbuf->b_ml.ml_line_count - lnum;
|
|
rex.reg_line_lbr = false;
|
|
int result = vim_regsub_both(source, NULL, dest, destlen, flags);
|
|
|
|
rex_in_use = rex_in_use_save;
|
|
if (rex_in_use) {
|
|
rex = rex_save;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// When nesting more than a couple levels it's probably a mistake.
|
|
#define MAX_REGSUB_NESTING 4
|
|
static char *eval_result[MAX_REGSUB_NESTING] = { NULL, NULL, NULL, NULL };
|
|
|
|
#if defined(EXITFREE)
|
|
void free_resub_eval_result(void)
|
|
{
|
|
for (int i = 0; i < MAX_REGSUB_NESTING; i++) {
|
|
XFREE_CLEAR(eval_result[i]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static int vim_regsub_both(char *source, typval_T *expr, char *dest, int destlen, int flags)
|
|
{
|
|
char *src;
|
|
char *dst;
|
|
char *s;
|
|
int c;
|
|
int cc;
|
|
int no = -1;
|
|
fptr_T func_all = (fptr_T)NULL;
|
|
fptr_T func_one = (fptr_T)NULL;
|
|
linenr_T clnum = 0; // init for GCC
|
|
int len = 0; // init for GCC
|
|
static int nesting = 0;
|
|
bool copy = flags & REGSUB_COPY;
|
|
|
|
// Be paranoid...
|
|
if ((source == NULL && expr == NULL) || dest == NULL) {
|
|
emsg(_(e_null));
|
|
return 0;
|
|
}
|
|
if (prog_magic_wrong()) {
|
|
return 0;
|
|
}
|
|
if (nesting == MAX_REGSUB_NESTING) {
|
|
emsg(_(e_substitute_nesting_too_deep));
|
|
return 0;
|
|
}
|
|
int nested = nesting;
|
|
src = source;
|
|
dst = dest;
|
|
|
|
// When the substitute part starts with "\=" evaluate it as an expression.
|
|
if (expr != NULL || (source[0] == '\\' && source[1] == '=')) {
|
|
// To make sure that the length doesn't change between checking the
|
|
// length and copying the string, and to speed up things, the
|
|
// resulting string is saved from the call with
|
|
// "flags & REGSUB_COPY" == 0 to the call with
|
|
// "flags & REGSUB_COPY" != 0.
|
|
if (copy) {
|
|
size_t reslen = eval_result[nested] != NULL ? strlen(eval_result[nested]) : 0;
|
|
if (eval_result[nested] != NULL && reslen < (size_t)destlen) {
|
|
STRCPY(dest, eval_result[nested]);
|
|
dst += reslen;
|
|
XFREE_CLEAR(eval_result[nested]);
|
|
}
|
|
} else {
|
|
const bool prev_can_f_submatch = can_f_submatch;
|
|
regsubmatch_T rsm_save;
|
|
|
|
XFREE_CLEAR(eval_result[nested]);
|
|
|
|
// The expression may contain substitute(), which calls us
|
|
// recursively. Make sure submatch() gets the text from the first
|
|
// level.
|
|
if (can_f_submatch) {
|
|
rsm_save = rsm;
|
|
}
|
|
can_f_submatch = true;
|
|
rsm.sm_match = rex.reg_match;
|
|
rsm.sm_mmatch = rex.reg_mmatch;
|
|
rsm.sm_firstlnum = rex.reg_firstlnum;
|
|
rsm.sm_maxline = rex.reg_maxline;
|
|
rsm.sm_line_lbr = rex.reg_line_lbr;
|
|
|
|
// Although unlikely, it is possible that the expression invokes a
|
|
// substitute command (it might fail, but still). Therefore keep
|
|
// an array of eval results.
|
|
nesting++;
|
|
|
|
if (expr != NULL) {
|
|
typval_T argv[2];
|
|
typval_T rettv;
|
|
staticList10_T matchList = TV_LIST_STATIC10_INIT;
|
|
rettv.v_type = VAR_STRING;
|
|
rettv.vval.v_string = NULL;
|
|
argv[0].v_type = VAR_LIST;
|
|
argv[0].vval.v_list = &matchList.sl_list;
|
|
funcexe_T funcexe = FUNCEXE_INIT;
|
|
funcexe.fe_argv_func = fill_submatch_list;
|
|
funcexe.fe_evaluate = true;
|
|
if (expr->v_type == VAR_FUNC) {
|
|
s = expr->vval.v_string;
|
|
call_func(s, -1, &rettv, 1, argv, &funcexe);
|
|
} else if (expr->v_type == VAR_PARTIAL) {
|
|
partial_T *partial = expr->vval.v_partial;
|
|
|
|
s = partial_name(partial);
|
|
funcexe.fe_partial = partial;
|
|
call_func(s, -1, &rettv, 1, argv, &funcexe);
|
|
}
|
|
if (tv_list_len(&matchList.sl_list) > 0) {
|
|
// fill_submatch_list() was called.
|
|
clear_submatch_list(&matchList);
|
|
}
|
|
if (rettv.v_type == VAR_UNKNOWN) {
|
|
// something failed, no need to report another error
|
|
eval_result[nested] = NULL;
|
|
} else {
|
|
char buf[NUMBUFLEN];
|
|
eval_result[nested] = (char *)tv_get_string_buf_chk(&rettv, buf);
|
|
if (eval_result[nested] != NULL) {
|
|
eval_result[nested] = xstrdup(eval_result[nested]);
|
|
}
|
|
}
|
|
tv_clear(&rettv);
|
|
} else {
|
|
eval_result[nested] = eval_to_string(source + 2, true);
|
|
}
|
|
nesting--;
|
|
|
|
if (eval_result[nested] != NULL) {
|
|
int had_backslash = false;
|
|
|
|
for (s = eval_result[nested]; *s != NUL; MB_PTR_ADV(s)) {
|
|
// Change NL to CR, so that it becomes a line break,
|
|
// unless called from vim_regexec_nl().
|
|
// Skip over a backslashed character.
|
|
if (*s == NL && !rsm.sm_line_lbr) {
|
|
*s = CAR;
|
|
} else if (*s == '\\' && s[1] != NUL) {
|
|
s++;
|
|
// Change NL to CR here too, so that this works:
|
|
// :s/abc\\\ndef/\="aaa\\\nbbb"/ on text:
|
|
// abc{backslash}
|
|
// def
|
|
// Not when called from vim_regexec_nl().
|
|
if (*s == NL && !rsm.sm_line_lbr) {
|
|
*s = CAR;
|
|
}
|
|
had_backslash = true;
|
|
}
|
|
}
|
|
if (had_backslash && (flags & REGSUB_BACKSLASH)) {
|
|
// Backslashes will be consumed, need to double them.
|
|
s = vim_strsave_escaped(eval_result[nested], "\\");
|
|
xfree(eval_result[nested]);
|
|
eval_result[nested] = s;
|
|
}
|
|
|
|
dst += strlen(eval_result[nested]);
|
|
}
|
|
|
|
can_f_submatch = prev_can_f_submatch;
|
|
if (can_f_submatch) {
|
|
rsm = rsm_save;
|
|
}
|
|
}
|
|
} else {
|
|
while ((c = (uint8_t)(*src++)) != NUL) {
|
|
if (c == '&' && (flags & REGSUB_MAGIC)) {
|
|
no = 0;
|
|
} else if (c == '\\' && *src != NUL) {
|
|
if (*src == '&' && !(flags & REGSUB_MAGIC)) {
|
|
src++;
|
|
no = 0;
|
|
} else if ('0' <= *src && *src <= '9') {
|
|
no = *src++ - '0';
|
|
} else if (vim_strchr("uUlLeE", (uint8_t)(*src))) {
|
|
switch (*src++) {
|
|
case 'u':
|
|
func_one = do_upper;
|
|
continue;
|
|
case 'U':
|
|
func_all = do_upper;
|
|
continue;
|
|
case 'l':
|
|
func_one = do_lower;
|
|
continue;
|
|
case 'L':
|
|
func_all = do_lower;
|
|
continue;
|
|
case 'e':
|
|
case 'E':
|
|
func_one = func_all = (fptr_T)NULL;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
if (no < 0) { // Ordinary character.
|
|
if (c == K_SPECIAL && src[0] != NUL && src[1] != NUL) {
|
|
// Copy a special key as-is.
|
|
if (copy) {
|
|
if (dst + 3 > dest + destlen) {
|
|
iemsg("vim_regsub_both(): not enough space");
|
|
return 0;
|
|
}
|
|
*dst++ = (char)c;
|
|
*dst++ = *src++;
|
|
*dst++ = *src++;
|
|
} else {
|
|
dst += 3;
|
|
src += 2;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (c == '\\' && *src != NUL) {
|
|
// Check for abbreviations -- webb
|
|
switch (*src) {
|
|
case 'r':
|
|
c = CAR; ++src; break;
|
|
case 'n':
|
|
c = NL; ++src; break;
|
|
case 't':
|
|
c = TAB; ++src; break;
|
|
// Oh no! \e already has meaning in subst pat :-(
|
|
// case 'e': c = ESC; ++src; break;
|
|
case 'b':
|
|
c = Ctrl_H; ++src; break;
|
|
|
|
// If "backslash" is true the backslash will be removed
|
|
// later. Used to insert a literal CR.
|
|
default:
|
|
if (flags & REGSUB_BACKSLASH) {
|
|
if (copy) {
|
|
if (dst + 1 > dest + destlen) {
|
|
iemsg("vim_regsub_both(): not enough space");
|
|
return 0;
|
|
}
|
|
*dst = '\\';
|
|
}
|
|
dst++;
|
|
}
|
|
c = (uint8_t)(*src++);
|
|
}
|
|
} else {
|
|
c = utf_ptr2char(src - 1);
|
|
}
|
|
|
|
// Write to buffer, if copy is set.
|
|
if (func_one != NULL) {
|
|
func_one(&cc, c);
|
|
func_one = NULL;
|
|
} else if (func_all != NULL) {
|
|
func_all(&cc, c);
|
|
} else {
|
|
// just copy
|
|
cc = c;
|
|
}
|
|
|
|
int totlen = utfc_ptr2len(src - 1);
|
|
int charlen = utf_char2len(cc);
|
|
|
|
if (copy) {
|
|
if (dst + charlen > dest + destlen) {
|
|
iemsg("vim_regsub_both(): not enough space");
|
|
return 0;
|
|
}
|
|
utf_char2bytes(cc, dst);
|
|
}
|
|
dst += charlen - 1;
|
|
int clen = utf_ptr2len(src - 1);
|
|
|
|
// If the character length is shorter than "totlen", there
|
|
// are composing characters; copy them as-is.
|
|
if (clen < totlen) {
|
|
if (copy) {
|
|
if (dst + totlen - clen > dest + destlen) {
|
|
iemsg("vim_regsub_both(): not enough space");
|
|
return 0;
|
|
}
|
|
memmove(dst + 1, src - 1 + clen, (size_t)(totlen - clen));
|
|
}
|
|
dst += totlen - clen;
|
|
}
|
|
src += totlen - 1;
|
|
dst++;
|
|
} else {
|
|
if (REG_MULTI) {
|
|
clnum = rex.reg_mmatch->startpos[no].lnum;
|
|
if (clnum < 0 || rex.reg_mmatch->endpos[no].lnum < 0) {
|
|
s = NULL;
|
|
} else {
|
|
s = reg_getline(clnum) + rex.reg_mmatch->startpos[no].col;
|
|
if (rex.reg_mmatch->endpos[no].lnum == clnum) {
|
|
len = rex.reg_mmatch->endpos[no].col
|
|
- rex.reg_mmatch->startpos[no].col;
|
|
} else {
|
|
len = (int)strlen(s);
|
|
}
|
|
}
|
|
} else {
|
|
s = rex.reg_match->startp[no];
|
|
if (rex.reg_match->endp[no] == NULL) {
|
|
s = NULL;
|
|
} else {
|
|
len = (int)(rex.reg_match->endp[no] - s);
|
|
}
|
|
}
|
|
if (s != NULL) {
|
|
while (true) {
|
|
if (len == 0) {
|
|
if (REG_MULTI) {
|
|
if (rex.reg_mmatch->endpos[no].lnum == clnum) {
|
|
break;
|
|
}
|
|
if (copy) {
|
|
if (dst + 1 > dest + destlen) {
|
|
iemsg("vim_regsub_both(): not enough space");
|
|
return 0;
|
|
}
|
|
*dst = CAR;
|
|
}
|
|
dst++;
|
|
s = reg_getline(++clnum);
|
|
if (rex.reg_mmatch->endpos[no].lnum == clnum) {
|
|
len = rex.reg_mmatch->endpos[no].col;
|
|
} else {
|
|
len = (int)strlen(s);
|
|
}
|
|
} else {
|
|
break;
|
|
}
|
|
} else if (*s == NUL) { // we hit NUL.
|
|
if (copy) {
|
|
iemsg(_(e_re_damg));
|
|
}
|
|
goto exit;
|
|
} else {
|
|
if ((flags & REGSUB_BACKSLASH) && (*s == CAR || *s == '\\')) {
|
|
// Insert a backslash in front of a CR, otherwise
|
|
// it will be replaced by a line break.
|
|
// Number of backslashes will be halved later,
|
|
// double them here.
|
|
if (copy) {
|
|
if (dst + 2 > dest + destlen) {
|
|
iemsg("vim_regsub_both(): not enough space");
|
|
return 0;
|
|
}
|
|
dst[0] = '\\';
|
|
dst[1] = *s;
|
|
}
|
|
dst += 2;
|
|
} else {
|
|
c = utf_ptr2char(s);
|
|
|
|
if (func_one != (fptr_T)NULL) {
|
|
func_one(&cc, c);
|
|
func_one = NULL;
|
|
} else if (func_all != (fptr_T)NULL) {
|
|
func_all(&cc, c);
|
|
} else { // just copy
|
|
cc = c;
|
|
}
|
|
|
|
{
|
|
int l;
|
|
int charlen;
|
|
|
|
// Copy composing characters separately, one
|
|
// at a time.
|
|
l = utf_ptr2len(s) - 1;
|
|
|
|
s += l;
|
|
len -= l;
|
|
charlen = utf_char2len(cc);
|
|
if (copy) {
|
|
if (dst + charlen > dest + destlen) {
|
|
iemsg("vim_regsub_both(): not enough space");
|
|
return 0;
|
|
}
|
|
utf_char2bytes(cc, dst);
|
|
}
|
|
dst += charlen - 1;
|
|
}
|
|
dst++;
|
|
}
|
|
|
|
s++;
|
|
len--;
|
|
}
|
|
}
|
|
}
|
|
no = -1;
|
|
}
|
|
}
|
|
}
|
|
if (copy) {
|
|
*dst = NUL;
|
|
}
|
|
|
|
exit:
|
|
return (int)((dst - dest) + 1);
|
|
}
|
|
|
|
/// Call reg_getline() with the line numbers from the submatch. If a
|
|
/// substitute() was used the reg_maxline and other values have been
|
|
/// overwritten.
|
|
static char *reg_getline_submatch(linenr_T lnum)
|
|
{
|
|
char *s;
|
|
linenr_T save_first = rex.reg_firstlnum;
|
|
linenr_T save_max = rex.reg_maxline;
|
|
|
|
rex.reg_firstlnum = rsm.sm_firstlnum;
|
|
rex.reg_maxline = rsm.sm_maxline;
|
|
|
|
s = reg_getline(lnum);
|
|
|
|
rex.reg_firstlnum = save_first;
|
|
rex.reg_maxline = save_max;
|
|
return s;
|
|
}
|
|
|
|
/// Used for the submatch() function: get the string from the n'th submatch in
|
|
/// allocated memory.
|
|
///
|
|
/// @return NULL when not in a ":s" command and for a non-existing submatch.
|
|
char *reg_submatch(int no)
|
|
{
|
|
char *retval = NULL;
|
|
char *s;
|
|
int round;
|
|
linenr_T lnum;
|
|
|
|
if (!can_f_submatch || no < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
if (rsm.sm_match == NULL) {
|
|
ssize_t len;
|
|
|
|
// First round: compute the length and allocate memory.
|
|
// Second round: copy the text.
|
|
for (round = 1; round <= 2; round++) {
|
|
lnum = rsm.sm_mmatch->startpos[no].lnum;
|
|
if (lnum < 0 || rsm.sm_mmatch->endpos[no].lnum < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
s = reg_getline_submatch(lnum);
|
|
if (s == NULL) { // anti-crash check, cannot happen?
|
|
break;
|
|
}
|
|
s += rsm.sm_mmatch->startpos[no].col;
|
|
if (rsm.sm_mmatch->endpos[no].lnum == lnum) {
|
|
// Within one line: take form start to end col.
|
|
len = rsm.sm_mmatch->endpos[no].col - rsm.sm_mmatch->startpos[no].col;
|
|
if (round == 2) {
|
|
xstrlcpy(retval, s, (size_t)len + 1);
|
|
}
|
|
len++;
|
|
} else {
|
|
// Multiple lines: take start line from start col, middle
|
|
// lines completely and end line up to end col.
|
|
len = (ssize_t)strlen(s);
|
|
if (round == 2) {
|
|
STRCPY(retval, s);
|
|
retval[len] = '\n';
|
|
}
|
|
len++;
|
|
lnum++;
|
|
while (lnum < rsm.sm_mmatch->endpos[no].lnum) {
|
|
s = reg_getline_submatch(lnum++);
|
|
if (round == 2) {
|
|
STRCPY(retval + len, s);
|
|
}
|
|
len += (ssize_t)strlen(s);
|
|
if (round == 2) {
|
|
retval[len] = '\n';
|
|
}
|
|
len++;
|
|
}
|
|
if (round == 2) {
|
|
strncpy(retval + len, // NOLINT(runtime/printf)
|
|
reg_getline_submatch(lnum),
|
|
(size_t)rsm.sm_mmatch->endpos[no].col);
|
|
}
|
|
len += rsm.sm_mmatch->endpos[no].col;
|
|
if (round == 2) {
|
|
retval[len] = NUL;
|
|
}
|
|
len++;
|
|
}
|
|
|
|
if (retval == NULL) {
|
|
retval = xmalloc((size_t)len);
|
|
}
|
|
}
|
|
} else {
|
|
s = rsm.sm_match->startp[no];
|
|
if (s == NULL || rsm.sm_match->endp[no] == NULL) {
|
|
retval = NULL;
|
|
} else {
|
|
retval = xstrnsave(s, (size_t)(rsm.sm_match->endp[no] - s));
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
// Used for the submatch() function with the optional non-zero argument: get
|
|
// the list of strings from the n'th submatch in allocated memory with NULs
|
|
// represented in NLs.
|
|
// Returns a list of allocated strings. Returns NULL when not in a ":s"
|
|
// command, for a non-existing submatch and for any error.
|
|
list_T *reg_submatch_list(int no)
|
|
{
|
|
if (!can_f_submatch || no < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
linenr_T slnum;
|
|
linenr_T elnum;
|
|
list_T *list;
|
|
const char *s;
|
|
|
|
if (rsm.sm_match == NULL) {
|
|
slnum = rsm.sm_mmatch->startpos[no].lnum;
|
|
elnum = rsm.sm_mmatch->endpos[no].lnum;
|
|
if (slnum < 0 || elnum < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
colnr_T scol = rsm.sm_mmatch->startpos[no].col;
|
|
colnr_T ecol = rsm.sm_mmatch->endpos[no].col;
|
|
|
|
list = tv_list_alloc(elnum - slnum + 1);
|
|
|
|
s = reg_getline_submatch(slnum) + scol;
|
|
if (slnum == elnum) {
|
|
tv_list_append_string(list, s, ecol - scol);
|
|
} else {
|
|
tv_list_append_string(list, s, -1);
|
|
for (int i = 1; i < elnum - slnum; i++) {
|
|
s = reg_getline_submatch(slnum + i);
|
|
tv_list_append_string(list, s, -1);
|
|
}
|
|
s = reg_getline_submatch(elnum);
|
|
tv_list_append_string(list, s, ecol);
|
|
}
|
|
} else {
|
|
s = rsm.sm_match->startp[no];
|
|
if (s == NULL || rsm.sm_match->endp[no] == NULL) {
|
|
return NULL;
|
|
}
|
|
list = tv_list_alloc(1);
|
|
tv_list_append_string(list, s, rsm.sm_match->endp[no] - s);
|
|
}
|
|
|
|
tv_list_ref(list);
|
|
return list;
|
|
}
|
|
|
|
/// Initialize the values used for matching against multiple lines
|
|
///
|
|
/// @param win window in which to search or NULL
|
|
/// @param buf buffer in which to search
|
|
/// @param lnum nr of line to start looking for match
|
|
static void init_regexec_multi(regmmatch_T *rmp, win_T *win, buf_T *buf, linenr_T lnum)
|
|
{
|
|
rex.reg_match = NULL;
|
|
rex.reg_mmatch = rmp;
|
|
rex.reg_buf = buf;
|
|
rex.reg_win = win;
|
|
rex.reg_firstlnum = lnum;
|
|
rex.reg_maxline = rex.reg_buf->b_ml.ml_line_count - lnum;
|
|
rex.reg_line_lbr = false;
|
|
rex.reg_ic = rmp->rmm_ic;
|
|
rex.reg_icombine = false;
|
|
rex.reg_nobreak = rmp->regprog->re_flags & RE_NOBREAK;
|
|
rex.reg_maxcol = rmp->rmm_maxcol;
|
|
}
|
|
|
|
// regexp_bt.c {{{1
|
|
|
|
// Backtracking regular expression implementation.
|
|
//
|
|
// NOTICE:
|
|
//
|
|
// This is NOT the original regular expression code as written by Henry
|
|
// Spencer. This code has been modified specifically for use with the VIM
|
|
// editor, and should not be used separately from Vim. If you want a good
|
|
// regular expression library, get the original code. The copyright notice
|
|
// that follows is from the original.
|
|
//
|
|
// END NOTICE
|
|
//
|
|
// Copyright (c) 1986 by University of Toronto.
|
|
// Written by Henry Spencer. Not derived from licensed software.
|
|
//
|
|
// Permission is granted to anyone to use this software for any
|
|
// purpose on any computer system, and to redistribute it freely,
|
|
// subject to the following restrictions:
|
|
//
|
|
// 1. The author is not responsible for the consequences of use of
|
|
// this software, no matter how awful, even if they arise
|
|
// from defects in it.
|
|
//
|
|
// 2. The origin of this software must not be misrepresented, either
|
|
// by explicit claim or by omission.
|
|
//
|
|
// 3. Altered versions must be plainly marked as such, and must not
|
|
// be misrepresented as being the original software.
|
|
//
|
|
// Beware that some of this code is subtly aware of the way operator
|
|
// precedence is structured in regular expressions. Serious changes in
|
|
// regular-expression syntax might require a total rethink.
|
|
//
|
|
// Changes have been made by Tony Andrews, Olaf 'Rhialto' Seibert, Robert
|
|
// Webb, Ciaran McCreesh and Bram Moolenaar.
|
|
// Named character class support added by Walter Briscoe (1998 Jul 01)
|
|
|
|
// The "internal use only" fields in regexp_defs.h are present to pass info from
|
|
// compile to execute that permits the execute phase to run lots faster on
|
|
// simple cases. They are:
|
|
//
|
|
// regstart char that must begin a match; NUL if none obvious; Can be a
|
|
// multi-byte character.
|
|
// reganch is the match anchored (at beginning-of-line only)?
|
|
// regmust string (pointer into program) that match must include, or NULL
|
|
// regmlen length of regmust string
|
|
// regflags RF_ values or'ed together
|
|
//
|
|
// Regstart and reganch permit very fast decisions on suitable starting points
|
|
// for a match, cutting down the work a lot. Regmust permits fast rejection
|
|
// of lines that cannot possibly match. The regmust tests are costly enough
|
|
// that vim_regcomp() supplies a regmust only if the r.e. contains something
|
|
// potentially expensive (at present, the only such thing detected is * or +
|
|
// at the start of the r.e., which can involve a lot of backup). Regmlen is
|
|
// supplied because the test in vim_regexec() needs it and vim_regcomp() is
|
|
// computing it anyway.
|
|
|
|
// Structure for regexp "program". This is essentially a linear encoding
|
|
// of a nondeterministic finite-state machine (aka syntax charts or
|
|
// "railroad normal form" in parsing technology). Each node is an opcode
|
|
// plus a "next" pointer, possibly plus an operand. "Next" pointers of
|
|
// all nodes except BRANCH and BRACES_COMPLEX implement concatenation; a "next"
|
|
// pointer with a BRANCH on both ends of it is connecting two alternatives.
|
|
// (Here we have one of the subtle syntax dependencies: an individual BRANCH
|
|
// (as opposed to a collection of them) is never concatenated with anything
|
|
// because of operator precedence). The "next" pointer of a BRACES_COMPLEX
|
|
// node points to the node after the stuff to be repeated.
|
|
// The operand of some types of node is a literal string; for others, it is a
|
|
// node leading into a sub-FSM. In particular, the operand of a BRANCH node
|
|
// is the first node of the branch.
|
|
// (NB this is *not* a tree structure: the tail of the branch connects to the
|
|
// thing following the set of BRANCHes.)
|
|
//
|
|
// pattern is coded like:
|
|
//
|
|
// +-----------------+
|
|
// | V
|
|
// <aa>\|<bb> BRANCH <aa> BRANCH <bb> --> END
|
|
// | ^ | ^
|
|
// +------+ +----------+
|
|
//
|
|
//
|
|
// +------------------+
|
|
// V |
|
|
// <aa>* BRANCH BRANCH <aa> --> BACK BRANCH --> NOTHING --> END
|
|
// | | ^ ^
|
|
// | +---------------+ |
|
|
// +---------------------------------------------+
|
|
//
|
|
//
|
|
// +----------------------+
|
|
// V |
|
|
// <aa>\+ BRANCH <aa> --> BRANCH --> BACK BRANCH --> NOTHING --> END
|
|
// | | ^ ^
|
|
// | +-----------+ |
|
|
// +--------------------------------------------------+
|
|
//
|
|
//
|
|
// +-------------------------+
|
|
// V |
|
|
// <aa>\{} BRANCH BRACE_LIMITS --> BRACE_COMPLEX <aa> --> BACK END
|
|
// | | ^
|
|
// | +----------------+
|
|
// +-----------------------------------------------+
|
|
//
|
|
//
|
|
// <aa>\@!<bb> BRANCH NOMATCH <aa> --> END <bb> --> END
|
|
// | | ^ ^
|
|
// | +----------------+ |
|
|
// +--------------------------------+
|
|
//
|
|
// +---------+
|
|
// | V
|
|
// \z[abc] BRANCH BRANCH a BRANCH b BRANCH c BRANCH NOTHING --> END
|
|
// | | | | ^ ^
|
|
// | | | +-----+ |
|
|
// | | +----------------+ |
|
|
// | +---------------------------+ |
|
|
// +------------------------------------------------------+
|
|
//
|
|
// They all start with a BRANCH for "\|" alternatives, even when there is only
|
|
// one alternative.
|
|
|
|
// The opcodes are:
|
|
|
|
// definition number opnd? meaning
|
|
#define END 0 // End of program or NOMATCH operand.
|
|
#define BOL 1 // Match "" at beginning of line.
|
|
#define EOL 2 // Match "" at end of line.
|
|
#define BRANCH 3 // node Match this alternative, or the
|
|
// next...
|
|
#define BACK 4 // Match "", "next" ptr points backward.
|
|
#define EXACTLY 5 // str Match this string.
|
|
#define NOTHING 6 // Match empty string.
|
|
#define STAR 7 // node Match this (simple) thing 0 or more
|
|
// times.
|
|
#define PLUS 8 // node Match this (simple) thing 1 or more
|
|
// times.
|
|
#define MATCH 9 // node match the operand zero-width
|
|
#define NOMATCH 10 // node check for no match with operand
|
|
#define BEHIND 11 // node look behind for a match with operand
|
|
#define NOBEHIND 12 // node look behind for no match with operand
|
|
#define SUBPAT 13 // node match the operand here
|
|
#define BRACE_SIMPLE 14 // node Match this (simple) thing between m and
|
|
// n times (\{m,n\}).
|
|
#define BOW 15 // Match "" after [^a-zA-Z0-9_]
|
|
#define EOW 16 // Match "" at [^a-zA-Z0-9_]
|
|
#define BRACE_LIMITS 17 // nr nr define the min & max for BRACE_SIMPLE
|
|
// and BRACE_COMPLEX.
|
|
#define NEWL 18 // Match line-break
|
|
#define BHPOS 19 // End position for BEHIND or NOBEHIND
|
|
|
|
// character classes: 20-48 normal, 50-78 include a line-break
|
|
#define ADD_NL 30
|
|
#define FIRST_NL ANY + ADD_NL
|
|
#define ANY 20 // Match any one character.
|
|
#define ANYOF 21 // str Match any character in this string.
|
|
#define ANYBUT 22 // str Match any character not in this
|
|
// string.
|
|
#define IDENT 23 // Match identifier char
|
|
#define SIDENT 24 // Match identifier char but no digit
|
|
#define KWORD 25 // Match keyword char
|
|
#define SKWORD 26 // Match word char but no digit
|
|
#define FNAME 27 // Match file name char
|
|
#define SFNAME 28 // Match file name char but no digit
|
|
#define PRINT 29 // Match printable char
|
|
#define SPRINT 30 // Match printable char but no digit
|
|
#define WHITE 31 // Match whitespace char
|
|
#define NWHITE 32 // Match non-whitespace char
|
|
#define DIGIT 33 // Match digit char
|
|
#define NDIGIT 34 // Match non-digit char
|
|
#define HEX 35 // Match hex char
|
|
#define NHEX 36 // Match non-hex char
|
|
#define OCTAL 37 // Match octal char
|
|
#define NOCTAL 38 // Match non-octal char
|
|
#define WORD 39 // Match word char
|
|
#define NWORD 40 // Match non-word char
|
|
#define HEAD 41 // Match head char
|
|
#define NHEAD 42 // Match non-head char
|
|
#define ALPHA 43 // Match alpha char
|
|
#define NALPHA 44 // Match non-alpha char
|
|
#define LOWER 45 // Match lowercase char
|
|
#define NLOWER 46 // Match non-lowercase char
|
|
#define UPPER 47 // Match uppercase char
|
|
#define NUPPER 48 // Match non-uppercase char
|
|
#define LAST_NL NUPPER + ADD_NL
|
|
#define WITH_NL(op) ((op) >= FIRST_NL && (op) <= LAST_NL)
|
|
|
|
#define MOPEN 80 // -89 Mark this point in input as start of
|
|
// \( … \) subexpr. MOPEN + 0 marks start of
|
|
// match.
|
|
#define MCLOSE 90 // -99 Analogous to MOPEN. MCLOSE + 0 marks
|
|
// end of match.
|
|
#define BACKREF 100 // -109 node Match same string again \1-\9.
|
|
|
|
#define ZOPEN 110 // -119 Mark this point in input as start of
|
|
// \z( … \) subexpr.
|
|
#define ZCLOSE 120 // -129 Analogous to ZOPEN.
|
|
#define ZREF 130 // -139 node Match external submatch \z1-\z9
|
|
|
|
#define BRACE_COMPLEX 140 // -149 node Match nodes between m & n times
|
|
|
|
#define NOPEN 150 // Mark this point in input as start of
|
|
// \%( subexpr.
|
|
#define NCLOSE 151 // Analogous to NOPEN.
|
|
|
|
#define MULTIBYTECODE 200 // mbc Match one multi-byte character
|
|
#define RE_BOF 201 // Match "" at beginning of file.
|
|
#define RE_EOF 202 // Match "" at end of file.
|
|
#define CURSOR 203 // Match location of cursor.
|
|
|
|
#define RE_LNUM 204 // nr cmp Match line number
|
|
#define RE_COL 205 // nr cmp Match column number
|
|
#define RE_VCOL 206 // nr cmp Match virtual column number
|
|
|
|
#define RE_MARK 207 // mark cmp Match mark position
|
|
#define RE_VISUAL 208 // Match Visual area
|
|
#define RE_COMPOSING 209 // any composing characters
|
|
|
|
// Flags to be passed up and down.
|
|
#define HASWIDTH 0x1 // Known never to match null string.
|
|
#define SIMPLE 0x2 // Simple enough to be STAR/PLUS operand.
|
|
#define SPSTART 0x4 // Starts with * or +.
|
|
#define HASNL 0x8 // Contains some \n.
|
|
#define HASLOOKBH 0x10 // Contains "\@<=" or "\@<!".
|
|
#define WORST 0 // Worst case.
|
|
|
|
static int prevchr_len; ///< byte length of previous char
|
|
static int num_complex_braces; ///< Complex \{...} count
|
|
static uint8_t *regcode; ///< Code-emit pointer, or JUST_CALC_SIZE
|
|
static int64_t regsize; ///< Code size.
|
|
static int reg_toolong; ///< true when offset out of range
|
|
static uint8_t had_endbrace[NSUBEXP]; ///< flags, true if end of () found
|
|
static int64_t brace_min[10]; ///< Minimums for complex brace repeats
|
|
static int64_t brace_max[10]; ///< Maximums for complex brace repeats
|
|
static int brace_count[10]; ///< Current counts for complex brace repeats
|
|
static int one_exactly = false; ///< only do one char for EXACTLY
|
|
|
|
// When making changes to classchars also change nfa_classcodes.
|
|
static uint8_t *classchars = (uint8_t *)".iIkKfFpPsSdDxXoOwWhHaAlLuU";
|
|
static int classcodes[] = {
|
|
ANY, IDENT, SIDENT, KWORD, SKWORD,
|
|
FNAME, SFNAME, PRINT, SPRINT,
|
|
WHITE, NWHITE, DIGIT, NDIGIT,
|
|
HEX, NHEX, OCTAL, NOCTAL,
|
|
WORD, NWORD, HEAD, NHEAD,
|
|
ALPHA, NALPHA, LOWER, NLOWER,
|
|
UPPER, NUPPER
|
|
};
|
|
|
|
// When regcode is set to this value, code is not emitted and size is computed
|
|
// instead.
|
|
#define JUST_CALC_SIZE ((uint8_t *)-1)
|
|
|
|
// used for STAR, PLUS and BRACE_SIMPLE matching
|
|
typedef struct regstar_S {
|
|
int nextb; // next byte
|
|
int nextb_ic; // next byte reverse case
|
|
int64_t count;
|
|
int64_t minval;
|
|
int64_t maxval;
|
|
} regstar_T;
|
|
|
|
// used to store input position when a BACK was encountered, so that we now if
|
|
// we made any progress since the last time.
|
|
typedef struct backpos_S {
|
|
uint8_t *bp_scan; // "scan" where BACK was encountered
|
|
regsave_T bp_pos; // last input position
|
|
} backpos_T;
|
|
|
|
// "regstack" and "backpos" are used by regmatch(). They are kept over calls
|
|
// to avoid invoking malloc() and free() often.
|
|
// "regstack" is a stack with regitem_T items, sometimes preceded by regstar_T
|
|
// or regbehind_T.
|
|
// "backpos_T" is a table with backpos_T for BACK
|
|
static garray_T regstack = GA_EMPTY_INIT_VALUE;
|
|
static garray_T backpos = GA_EMPTY_INIT_VALUE;
|
|
|
|
static regsave_T behind_pos;
|
|
|
|
// Both for regstack and backpos tables we use the following strategy of
|
|
// allocation (to reduce malloc/free calls):
|
|
// - Initial size is fairly small.
|
|
// - When needed, the tables are grown bigger (8 times at first, double after
|
|
// that).
|
|
// - After executing the match we free the memory only if the array has grown.
|
|
// Thus the memory is kept allocated when it's at the initial size.
|
|
// This makes it fast while not keeping a lot of memory allocated.
|
|
// A three times speed increase was observed when using many simple patterns.
|
|
#define REGSTACK_INITIAL 2048
|
|
#define BACKPOS_INITIAL 64
|
|
|
|
// Opcode notes:
|
|
//
|
|
// BRANCH The set of branches constituting a single choice are hooked
|
|
// together with their "next" pointers, since precedence prevents
|
|
// anything being concatenated to any individual branch. The
|
|
// "next" pointer of the last BRANCH in a choice points to the
|
|
// thing following the whole choice. This is also where the
|
|
// final "next" pointer of each individual branch points; each
|
|
// branch starts with the operand node of a BRANCH node.
|
|
//
|
|
// BACK Normal "next" pointers all implicitly point forward; BACK
|
|
// exists to make loop structures possible.
|
|
//
|
|
// STAR,PLUS '=', and complex '*' and '+', are implemented as circular
|
|
// BRANCH structures using BACK. Simple cases (one character
|
|
// per match) are implemented with STAR and PLUS for speed
|
|
// and to minimize recursive plunges.
|
|
//
|
|
// BRACE_LIMITS This is always followed by a BRACE_SIMPLE or BRACE_COMPLEX
|
|
// node, and defines the min and max limits to be used for that
|
|
// node.
|
|
//
|
|
// MOPEN,MCLOSE ...are numbered at compile time.
|
|
// ZOPEN,ZCLOSE ...ditto
|
|
///
|
|
//
|
|
//
|
|
// A node is one char of opcode followed by two chars of "next" pointer.
|
|
// "Next" pointers are stored as two 8-bit bytes, high order first. The
|
|
// value is a positive offset from the opcode of the node containing it.
|
|
// An operand, if any, simply follows the node. (Note that much of the
|
|
// code generation knows about this implicit relationship.)
|
|
//
|
|
// Using two bytes for the "next" pointer is vast overkill for most things,
|
|
// but allows patterns to get big without disasters.
|
|
#define OP(p) ((int)(*(p)))
|
|
#define NEXT(p) (((*((p) + 1) & 0377) << 8) + (*((p) + 2) & 0377))
|
|
#define OPERAND(p) ((p) + 3)
|
|
// Obtain an operand that was stored as four bytes, MSB first.
|
|
#define OPERAND_MIN(p) (((int64_t)(p)[3] << 24) + ((int64_t)(p)[4] << 16) \
|
|
+ ((int64_t)(p)[5] << 8) + (int64_t)(p)[6])
|
|
// Obtain a second operand stored as four bytes.
|
|
#define OPERAND_MAX(p) OPERAND_MIN((p) + 4)
|
|
// Obtain a second single-byte operand stored after a four bytes operand.
|
|
#define OPERAND_CMP(p) (p)[7]
|
|
|
|
static uint8_t *reg(int paren, int *flagp);
|
|
|
|
#ifdef BT_REGEXP_DUMP
|
|
static void regdump(uint8_t *, bt_regprog_T *);
|
|
#endif
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
static uint8_t *regprop(uint8_t *);
|
|
|
|
static int regnarrate = 0;
|
|
#endif
|
|
|
|
// Setup to parse the regexp. Used once to get the length and once to do it.
|
|
static void regcomp_start(uint8_t *expr, int re_flags) // see vim_regcomp()
|
|
{
|
|
initchr((char *)expr);
|
|
if (re_flags & RE_MAGIC) {
|
|
reg_magic = MAGIC_ON;
|
|
} else {
|
|
reg_magic = MAGIC_OFF;
|
|
}
|
|
reg_string = (re_flags & RE_STRING);
|
|
reg_strict = (re_flags & RE_STRICT);
|
|
get_cpo_flags();
|
|
|
|
num_complex_braces = 0;
|
|
regnpar = 1;
|
|
CLEAR_FIELD(had_endbrace);
|
|
regnzpar = 1;
|
|
re_has_z = 0;
|
|
regsize = 0L;
|
|
reg_toolong = false;
|
|
regflags = 0;
|
|
had_eol = false;
|
|
}
|
|
|
|
// Return true if MULTIBYTECODE should be used instead of EXACTLY for
|
|
// character "c".
|
|
static bool use_multibytecode(int c)
|
|
{
|
|
return utf_char2len(c) > 1
|
|
&& (re_multi_type(peekchr()) != NOT_MULTI
|
|
|| utf_iscomposing(c));
|
|
}
|
|
|
|
// Emit (if appropriate) a byte of code
|
|
static void regc(int b)
|
|
{
|
|
if (regcode == JUST_CALC_SIZE) {
|
|
regsize++;
|
|
} else {
|
|
*regcode++ = (uint8_t)b;
|
|
}
|
|
}
|
|
|
|
// Emit (if appropriate) a multi-byte character of code
|
|
static void regmbc(int c)
|
|
{
|
|
if (regcode == JUST_CALC_SIZE) {
|
|
regsize += utf_char2len(c);
|
|
} else {
|
|
regcode += utf_char2bytes(c, (char *)regcode);
|
|
}
|
|
}
|
|
|
|
// Produce the bytes for equivalence class "c".
|
|
// Currently only handles latin1, latin9 and utf-8.
|
|
// NOTE: When changing this function, also change nfa_emit_equi_class()
|
|
static void reg_equi_class(int c)
|
|
{
|
|
{
|
|
switch (c) {
|
|
// Do not use '\300' style, it results in a negative number.
|
|
case 'A':
|
|
case 0xc0:
|
|
case 0xc1:
|
|
case 0xc2:
|
|
case 0xc3:
|
|
case 0xc4:
|
|
case 0xc5:
|
|
case 0x100:
|
|
case 0x102:
|
|
case 0x104:
|
|
case 0x1cd:
|
|
case 0x1de:
|
|
case 0x1e0:
|
|
case 0x1fa:
|
|
case 0x202:
|
|
case 0x226:
|
|
case 0x23a:
|
|
case 0x1e00:
|
|
case 0x1ea0:
|
|
case 0x1ea2:
|
|
case 0x1ea4:
|
|
case 0x1ea6:
|
|
case 0x1ea8:
|
|
case 0x1eaa:
|
|
case 0x1eac:
|
|
case 0x1eae:
|
|
case 0x1eb0:
|
|
case 0x1eb2:
|
|
case 0x1eb4:
|
|
case 0x1eb6:
|
|
regmbc('A'); regmbc(0xc0); regmbc(0xc1); regmbc(0xc2);
|
|
regmbc(0xc3); regmbc(0xc4); regmbc(0xc5);
|
|
regmbc(0x100); regmbc(0x102); regmbc(0x104);
|
|
regmbc(0x1cd); regmbc(0x1de); regmbc(0x1e0);
|
|
regmbc(0x1fa); regmbc(0x202); regmbc(0x226);
|
|
regmbc(0x23a); regmbc(0x1e00); regmbc(0x1ea0);
|
|
regmbc(0x1ea2); regmbc(0x1ea4); regmbc(0x1ea6);
|
|
regmbc(0x1ea8); regmbc(0x1eaa); regmbc(0x1eac);
|
|
regmbc(0x1eae); regmbc(0x1eb0); regmbc(0x1eb2);
|
|
regmbc(0x1eb4); regmbc(0x1eb6);
|
|
return;
|
|
case 'B':
|
|
case 0x181:
|
|
case 0x243:
|
|
case 0x1e02:
|
|
case 0x1e04:
|
|
case 0x1e06:
|
|
regmbc('B');
|
|
regmbc(0x181); regmbc(0x243); regmbc(0x1e02);
|
|
regmbc(0x1e04); regmbc(0x1e06);
|
|
return;
|
|
case 'C':
|
|
case 0xc7:
|
|
case 0x106:
|
|
case 0x108:
|
|
case 0x10a:
|
|
case 0x10c:
|
|
case 0x187:
|
|
case 0x23b:
|
|
case 0x1e08:
|
|
case 0xa792:
|
|
regmbc('C'); regmbc(0xc7);
|
|
regmbc(0x106); regmbc(0x108); regmbc(0x10a);
|
|
regmbc(0x10c); regmbc(0x187); regmbc(0x23b);
|
|
regmbc(0x1e08); regmbc(0xa792);
|
|
return;
|
|
case 'D':
|
|
case 0x10e:
|
|
case 0x110:
|
|
case 0x18a:
|
|
case 0x1e0a:
|
|
case 0x1e0c:
|
|
case 0x1e0e:
|
|
case 0x1e10:
|
|
case 0x1e12:
|
|
regmbc('D'); regmbc(0x10e); regmbc(0x110);
|
|
regmbc(0x18a); regmbc(0x1e0a); regmbc(0x1e0c);
|
|
regmbc(0x1e0e); regmbc(0x1e10); regmbc(0x1e12);
|
|
return;
|
|
case 'E':
|
|
case 0xc8:
|
|
case 0xc9:
|
|
case 0xca:
|
|
case 0xcb:
|
|
case 0x112:
|
|
case 0x114:
|
|
case 0x116:
|
|
case 0x118:
|
|
case 0x11a:
|
|
case 0x204:
|
|
case 0x206:
|
|
case 0x228:
|
|
case 0x246:
|
|
case 0x1e14:
|
|
case 0x1e16:
|
|
case 0x1e18:
|
|
case 0x1e1a:
|
|
case 0x1e1c:
|
|
case 0x1eb8:
|
|
case 0x1eba:
|
|
case 0x1ebc:
|
|
case 0x1ebe:
|
|
case 0x1ec0:
|
|
case 0x1ec2:
|
|
case 0x1ec4:
|
|
case 0x1ec6:
|
|
regmbc('E'); regmbc(0xc8); regmbc(0xc9);
|
|
regmbc(0xca); regmbc(0xcb); regmbc(0x112);
|
|
regmbc(0x114); regmbc(0x116); regmbc(0x118);
|
|
regmbc(0x11a); regmbc(0x204); regmbc(0x206);
|
|
regmbc(0x228); regmbc(0x246); regmbc(0x1e14);
|
|
regmbc(0x1e16); regmbc(0x1e18); regmbc(0x1e1a);
|
|
regmbc(0x1e1c); regmbc(0x1eb8); regmbc(0x1eba);
|
|
regmbc(0x1ebc); regmbc(0x1ebe); regmbc(0x1ec0);
|
|
regmbc(0x1ec2); regmbc(0x1ec4); regmbc(0x1ec6);
|
|
return;
|
|
case 'F':
|
|
case 0x191:
|
|
case 0x1e1e:
|
|
case 0xa798:
|
|
regmbc('F'); regmbc(0x191); regmbc(0x1e1e);
|
|
regmbc(0xa798);
|
|
return;
|
|
case 'G':
|
|
case 0x11c:
|
|
case 0x11e:
|
|
case 0x120:
|
|
case 0x122:
|
|
case 0x193:
|
|
case 0x1e4:
|
|
case 0x1e6:
|
|
case 0x1f4:
|
|
case 0x1e20:
|
|
case 0xa7a0:
|
|
regmbc('G'); regmbc(0x11c); regmbc(0x11e);
|
|
regmbc(0x120); regmbc(0x122); regmbc(0x193);
|
|
regmbc(0x1e4); regmbc(0x1e6); regmbc(0x1f4);
|
|
regmbc(0x1e20); regmbc(0xa7a0);
|
|
return;
|
|
case 'H':
|
|
case 0x124:
|
|
case 0x126:
|
|
case 0x21e:
|
|
case 0x1e22:
|
|
case 0x1e24:
|
|
case 0x1e26:
|
|
case 0x1e28:
|
|
case 0x1e2a:
|
|
case 0x2c67:
|
|
regmbc('H'); regmbc(0x124); regmbc(0x126);
|
|
regmbc(0x21e); regmbc(0x1e22); regmbc(0x1e24);
|
|
regmbc(0x1e26); regmbc(0x1e28); regmbc(0x1e2a);
|
|
regmbc(0x2c67);
|
|
return;
|
|
case 'I':
|
|
case 0xcc:
|
|
case 0xcd:
|
|
case 0xce:
|
|
case 0xcf:
|
|
case 0x128:
|
|
case 0x12a:
|
|
case 0x12c:
|
|
case 0x12e:
|
|
case 0x130:
|
|
case 0x197:
|
|
case 0x1cf:
|
|
case 0x208:
|
|
case 0x20a:
|
|
case 0x1e2c:
|
|
case 0x1e2e:
|
|
case 0x1ec8:
|
|
case 0x1eca:
|
|
regmbc('I'); regmbc(0xcc); regmbc(0xcd);
|
|
regmbc(0xce); regmbc(0xcf); regmbc(0x128);
|
|
regmbc(0x12a); regmbc(0x12c); regmbc(0x12e);
|
|
regmbc(0x130); regmbc(0x197); regmbc(0x1cf);
|
|
regmbc(0x208); regmbc(0x20a); regmbc(0x1e2c);
|
|
regmbc(0x1e2e); regmbc(0x1ec8); regmbc(0x1eca);
|
|
return;
|
|
case 'J':
|
|
case 0x134:
|
|
case 0x248:
|
|
regmbc('J'); regmbc(0x134); regmbc(0x248);
|
|
return;
|
|
case 'K':
|
|
case 0x136:
|
|
case 0x198:
|
|
case 0x1e8:
|
|
case 0x1e30:
|
|
case 0x1e32:
|
|
case 0x1e34:
|
|
case 0x2c69:
|
|
case 0xa740:
|
|
regmbc('K'); regmbc(0x136); regmbc(0x198);
|
|
regmbc(0x1e8); regmbc(0x1e30); regmbc(0x1e32);
|
|
regmbc(0x1e34); regmbc(0x2c69); regmbc(0xa740);
|
|
return;
|
|
case 'L':
|
|
case 0x139:
|
|
case 0x13b:
|
|
case 0x13d:
|
|
case 0x13f:
|
|
case 0x141:
|
|
case 0x23d:
|
|
case 0x1e36:
|
|
case 0x1e38:
|
|
case 0x1e3a:
|
|
case 0x1e3c:
|
|
case 0x2c60:
|
|
regmbc('L'); regmbc(0x139); regmbc(0x13b);
|
|
regmbc(0x13d); regmbc(0x13f); regmbc(0x141);
|
|
regmbc(0x23d); regmbc(0x1e36); regmbc(0x1e38);
|
|
regmbc(0x1e3a); regmbc(0x1e3c); regmbc(0x2c60);
|
|
return;
|
|
case 'M':
|
|
case 0x1e3e:
|
|
case 0x1e40:
|
|
case 0x1e42:
|
|
regmbc('M'); regmbc(0x1e3e); regmbc(0x1e40);
|
|
regmbc(0x1e42);
|
|
return;
|
|
case 'N':
|
|
case 0xd1:
|
|
case 0x143:
|
|
case 0x145:
|
|
case 0x147:
|
|
case 0x1f8:
|
|
case 0x1e44:
|
|
case 0x1e46:
|
|
case 0x1e48:
|
|
case 0x1e4a:
|
|
case 0xa7a4:
|
|
regmbc('N'); regmbc(0xd1);
|
|
regmbc(0x143); regmbc(0x145); regmbc(0x147);
|
|
regmbc(0x1f8); regmbc(0x1e44); regmbc(0x1e46);
|
|
regmbc(0x1e48); regmbc(0x1e4a); regmbc(0xa7a4);
|
|
return;
|
|
case 'O':
|
|
case 0xd2:
|
|
case 0xd3:
|
|
case 0xd4:
|
|
case 0xd5:
|
|
case 0xd6:
|
|
case 0xd8:
|
|
case 0x14c:
|
|
case 0x14e:
|
|
case 0x150:
|
|
case 0x19f:
|
|
case 0x1a0:
|
|
case 0x1d1:
|
|
case 0x1ea:
|
|
case 0x1ec:
|
|
case 0x1fe:
|
|
case 0x20c:
|
|
case 0x20e:
|
|
case 0x22a:
|
|
case 0x22c:
|
|
case 0x22e:
|
|
case 0x230:
|
|
case 0x1e4c:
|
|
case 0x1e4e:
|
|
case 0x1e50:
|
|
case 0x1e52:
|
|
case 0x1ecc:
|
|
case 0x1ece:
|
|
case 0x1ed0:
|
|
case 0x1ed2:
|
|
case 0x1ed4:
|
|
case 0x1ed6:
|
|
case 0x1ed8:
|
|
case 0x1eda:
|
|
case 0x1edc:
|
|
case 0x1ede:
|
|
case 0x1ee0:
|
|
case 0x1ee2:
|
|
regmbc('O'); regmbc(0xd2); regmbc(0xd3); regmbc(0xd4);
|
|
regmbc(0xd5); regmbc(0xd6); regmbc(0xd8);
|
|
regmbc(0x14c); regmbc(0x14e); regmbc(0x150);
|
|
regmbc(0x19f); regmbc(0x1a0); regmbc(0x1d1);
|
|
regmbc(0x1ea); regmbc(0x1ec); regmbc(0x1fe);
|
|
regmbc(0x20c); regmbc(0x20e); regmbc(0x22a);
|
|
regmbc(0x22c); regmbc(0x22e); regmbc(0x230);
|
|
regmbc(0x1e4c); regmbc(0x1e4e); regmbc(0x1e50);
|
|
regmbc(0x1e52); regmbc(0x1ecc); regmbc(0x1ece);
|
|
regmbc(0x1ed0); regmbc(0x1ed2); regmbc(0x1ed4);
|
|
regmbc(0x1ed6); regmbc(0x1ed8); regmbc(0x1eda);
|
|
regmbc(0x1edc); regmbc(0x1ede); regmbc(0x1ee0);
|
|
regmbc(0x1ee2);
|
|
return;
|
|
case 'P':
|
|
case 0x1a4:
|
|
case 0x1e54:
|
|
case 0x1e56:
|
|
case 0x2c63:
|
|
regmbc('P'); regmbc(0x1a4); regmbc(0x1e54);
|
|
regmbc(0x1e56); regmbc(0x2c63);
|
|
return;
|
|
case 'Q':
|
|
case 0x24a:
|
|
regmbc('Q'); regmbc(0x24a);
|
|
return;
|
|
case 'R':
|
|
case 0x154:
|
|
case 0x156:
|
|
case 0x158:
|
|
case 0x210:
|
|
case 0x212:
|
|
case 0x24c:
|
|
case 0x1e58:
|
|
case 0x1e5a:
|
|
case 0x1e5c:
|
|
case 0x1e5e:
|
|
case 0x2c64:
|
|
case 0xa7a6:
|
|
regmbc('R'); regmbc(0x154); regmbc(0x156);
|
|
regmbc(0x210); regmbc(0x212); regmbc(0x158);
|
|
regmbc(0x24c); regmbc(0x1e58); regmbc(0x1e5a);
|
|
regmbc(0x1e5c); regmbc(0x1e5e); regmbc(0x2c64);
|
|
regmbc(0xa7a6);
|
|
return;
|
|
case 'S':
|
|
case 0x15a:
|
|
case 0x15c:
|
|
case 0x15e:
|
|
case 0x160:
|
|
case 0x218:
|
|
case 0x1e60:
|
|
case 0x1e62:
|
|
case 0x1e64:
|
|
case 0x1e66:
|
|
case 0x1e68:
|
|
case 0x2c7e:
|
|
case 0xa7a8:
|
|
regmbc('S'); regmbc(0x15a); regmbc(0x15c);
|
|
regmbc(0x15e); regmbc(0x160); regmbc(0x218);
|
|
regmbc(0x1e60); regmbc(0x1e62); regmbc(0x1e64);
|
|
regmbc(0x1e66); regmbc(0x1e68); regmbc(0x2c7e);
|
|
regmbc(0xa7a8);
|
|
return;
|
|
case 'T':
|
|
case 0x162:
|
|
case 0x164:
|
|
case 0x166:
|
|
case 0x1ac:
|
|
case 0x1ae:
|
|
case 0x21a:
|
|
case 0x23e:
|
|
case 0x1e6a:
|
|
case 0x1e6c:
|
|
case 0x1e6e:
|
|
case 0x1e70:
|
|
regmbc('T'); regmbc(0x162); regmbc(0x164);
|
|
regmbc(0x166); regmbc(0x1ac); regmbc(0x23e);
|
|
regmbc(0x1ae); regmbc(0x21a); regmbc(0x1e6a);
|
|
regmbc(0x1e6c); regmbc(0x1e6e); regmbc(0x1e70);
|
|
return;
|
|
case 'U':
|
|
case 0xd9:
|
|
case 0xda:
|
|
case 0xdb:
|
|
case 0xdc:
|
|
case 0x168:
|
|
case 0x16a:
|
|
case 0x16c:
|
|
case 0x16e:
|
|
case 0x170:
|
|
case 0x172:
|
|
case 0x1af:
|
|
case 0x1d3:
|
|
case 0x1d5:
|
|
case 0x1d7:
|
|
case 0x1d9:
|
|
case 0x1db:
|
|
case 0x214:
|
|
case 0x216:
|
|
case 0x244:
|
|
case 0x1e72:
|
|
case 0x1e74:
|
|
case 0x1e76:
|
|
case 0x1e78:
|
|
case 0x1e7a:
|
|
case 0x1ee4:
|
|
case 0x1ee6:
|
|
case 0x1ee8:
|
|
case 0x1eea:
|
|
case 0x1eec:
|
|
case 0x1eee:
|
|
case 0x1ef0:
|
|
regmbc('U'); regmbc(0xd9); regmbc(0xda);
|
|
regmbc(0xdb); regmbc(0xdc); regmbc(0x168);
|
|
regmbc(0x16a); regmbc(0x16c); regmbc(0x16e);
|
|
regmbc(0x170); regmbc(0x172); regmbc(0x1af);
|
|
regmbc(0x1d3); regmbc(0x1d5); regmbc(0x1d7);
|
|
regmbc(0x1d9); regmbc(0x1db); regmbc(0x214);
|
|
regmbc(0x216); regmbc(0x244); regmbc(0x1e72);
|
|
regmbc(0x1e74); regmbc(0x1e76); regmbc(0x1e78);
|
|
regmbc(0x1e7a); regmbc(0x1ee4); regmbc(0x1ee6);
|
|
regmbc(0x1ee8); regmbc(0x1eea); regmbc(0x1eec);
|
|
regmbc(0x1eee); regmbc(0x1ef0);
|
|
return;
|
|
case 'V':
|
|
case 0x1b2:
|
|
case 0x1e7c:
|
|
case 0x1e7e:
|
|
regmbc('V'); regmbc(0x1b2); regmbc(0x1e7c);
|
|
regmbc(0x1e7e);
|
|
return;
|
|
case 'W':
|
|
case 0x174:
|
|
case 0x1e80:
|
|
case 0x1e82:
|
|
case 0x1e84:
|
|
case 0x1e86:
|
|
case 0x1e88:
|
|
regmbc('W'); regmbc(0x174); regmbc(0x1e80);
|
|
regmbc(0x1e82); regmbc(0x1e84); regmbc(0x1e86);
|
|
regmbc(0x1e88);
|
|
return;
|
|
case 'X':
|
|
case 0x1e8a:
|
|
case 0x1e8c:
|
|
regmbc('X'); regmbc(0x1e8a); regmbc(0x1e8c);
|
|
return;
|
|
case 'Y':
|
|
case 0xdd:
|
|
case 0x176:
|
|
case 0x178:
|
|
case 0x1b3:
|
|
case 0x232:
|
|
case 0x24e:
|
|
case 0x1e8e:
|
|
case 0x1ef2:
|
|
case 0x1ef6:
|
|
case 0x1ef4:
|
|
case 0x1ef8:
|
|
regmbc('Y'); regmbc(0xdd); regmbc(0x176);
|
|
regmbc(0x178); regmbc(0x1b3); regmbc(0x232);
|
|
regmbc(0x24e); regmbc(0x1e8e); regmbc(0x1ef2);
|
|
regmbc(0x1ef4); regmbc(0x1ef6); regmbc(0x1ef8);
|
|
return;
|
|
case 'Z':
|
|
case 0x179:
|
|
case 0x17b:
|
|
case 0x17d:
|
|
case 0x1b5:
|
|
case 0x1e90:
|
|
case 0x1e92:
|
|
case 0x1e94:
|
|
case 0x2c6b:
|
|
regmbc('Z'); regmbc(0x179); regmbc(0x17b);
|
|
regmbc(0x17d); regmbc(0x1b5); regmbc(0x1e90);
|
|
regmbc(0x1e92); regmbc(0x1e94); regmbc(0x2c6b);
|
|
return;
|
|
case 'a':
|
|
case 0xe0:
|
|
case 0xe1:
|
|
case 0xe2:
|
|
case 0xe3:
|
|
case 0xe4:
|
|
case 0xe5:
|
|
case 0x101:
|
|
case 0x103:
|
|
case 0x105:
|
|
case 0x1ce:
|
|
case 0x1df:
|
|
case 0x1e1:
|
|
case 0x1fb:
|
|
case 0x201:
|
|
case 0x203:
|
|
case 0x227:
|
|
case 0x1d8f:
|
|
case 0x1e01:
|
|
case 0x1e9a:
|
|
case 0x1ea1:
|
|
case 0x1ea3:
|
|
case 0x1ea5:
|
|
case 0x1ea7:
|
|
case 0x1ea9:
|
|
case 0x1eab:
|
|
case 0x1ead:
|
|
case 0x1eaf:
|
|
case 0x1eb1:
|
|
case 0x1eb3:
|
|
case 0x1eb5:
|
|
case 0x1eb7:
|
|
case 0x2c65:
|
|
regmbc('a'); regmbc(0xe0); regmbc(0xe1);
|
|
regmbc(0xe2); regmbc(0xe3); regmbc(0xe4);
|
|
regmbc(0xe5); regmbc(0x101); regmbc(0x103);
|
|
regmbc(0x105); regmbc(0x1ce); regmbc(0x1df);
|
|
regmbc(0x1e1); regmbc(0x1fb); regmbc(0x201);
|
|
regmbc(0x203); regmbc(0x227); regmbc(0x1d8f);
|
|
regmbc(0x1e01); regmbc(0x1e9a); regmbc(0x1ea1);
|
|
regmbc(0x1ea3); regmbc(0x1ea5); regmbc(0x1ea7);
|
|
regmbc(0x1ea9); regmbc(0x1eab); regmbc(0x1ead);
|
|
regmbc(0x1eaf); regmbc(0x1eb1); regmbc(0x1eb3);
|
|
regmbc(0x1eb5); regmbc(0x1eb7); regmbc(0x2c65);
|
|
return;
|
|
case 'b':
|
|
case 0x180:
|
|
case 0x253:
|
|
case 0x1d6c:
|
|
case 0x1d80:
|
|
case 0x1e03:
|
|
case 0x1e05:
|
|
case 0x1e07:
|
|
regmbc('b');
|
|
regmbc(0x180); regmbc(0x253); regmbc(0x1d6c);
|
|
regmbc(0x1d80); regmbc(0x1e03); regmbc(0x1e05);
|
|
regmbc(0x1e07);
|
|
return;
|
|
case 'c':
|
|
case 0xe7:
|
|
case 0x107:
|
|
case 0x109:
|
|
case 0x10b:
|
|
case 0x10d:
|
|
case 0x188:
|
|
case 0x23c:
|
|
case 0x1e09:
|
|
case 0xa793:
|
|
case 0xa794:
|
|
regmbc('c'); regmbc(0xe7); regmbc(0x107);
|
|
regmbc(0x109); regmbc(0x10b); regmbc(0x10d);
|
|
regmbc(0x188); regmbc(0x23c); regmbc(0x1e09);
|
|
regmbc(0xa793); regmbc(0xa794);
|
|
return;
|
|
case 'd':
|
|
case 0x10f:
|
|
case 0x111:
|
|
case 0x257:
|
|
case 0x1d6d:
|
|
case 0x1d81:
|
|
case 0x1d91:
|
|
case 0x1e0b:
|
|
case 0x1e0d:
|
|
case 0x1e0f:
|
|
case 0x1e11:
|
|
case 0x1e13:
|
|
regmbc('d'); regmbc(0x10f); regmbc(0x111);
|
|
regmbc(0x257); regmbc(0x1d6d); regmbc(0x1d81);
|
|
regmbc(0x1d91); regmbc(0x1e0b); regmbc(0x1e0d);
|
|
regmbc(0x1e0f); regmbc(0x1e11); regmbc(0x1e13);
|
|
return;
|
|
case 'e':
|
|
case 0xe8:
|
|
case 0xe9:
|
|
case 0xea:
|
|
case 0xeb:
|
|
case 0x113:
|
|
case 0x115:
|
|
case 0x117:
|
|
case 0x119:
|
|
case 0x11b:
|
|
case 0x205:
|
|
case 0x207:
|
|
case 0x229:
|
|
case 0x247:
|
|
case 0x1d92:
|
|
case 0x1e15:
|
|
case 0x1e17:
|
|
case 0x1e19:
|
|
case 0x1e1b:
|
|
case 0x1eb9:
|
|
case 0x1ebb:
|
|
case 0x1e1d:
|
|
case 0x1ebd:
|
|
case 0x1ebf:
|
|
case 0x1ec1:
|
|
case 0x1ec3:
|
|
case 0x1ec5:
|
|
case 0x1ec7:
|
|
regmbc('e'); regmbc(0xe8); regmbc(0xe9);
|
|
regmbc(0xea); regmbc(0xeb); regmbc(0x113);
|
|
regmbc(0x115); regmbc(0x117); regmbc(0x119);
|
|
regmbc(0x11b); regmbc(0x205); regmbc(0x207);
|
|
regmbc(0x229); regmbc(0x247); regmbc(0x1d92);
|
|
regmbc(0x1e15); regmbc(0x1e17); regmbc(0x1e19);
|
|
regmbc(0x1e1b); regmbc(0x1e1d); regmbc(0x1eb9);
|
|
regmbc(0x1ebb); regmbc(0x1ebd); regmbc(0x1ebf);
|
|
regmbc(0x1ec1); regmbc(0x1ec3); regmbc(0x1ec5);
|
|
regmbc(0x1ec7);
|
|
return;
|
|
case 'f':
|
|
case 0x192:
|
|
case 0x1d6e:
|
|
case 0x1d82:
|
|
case 0x1e1f:
|
|
case 0xa799:
|
|
regmbc('f'); regmbc(0x192); regmbc(0x1d6e);
|
|
regmbc(0x1d82); regmbc(0x1e1f); regmbc(0xa799);
|
|
return;
|
|
case 'g':
|
|
case 0x11d:
|
|
case 0x11f:
|
|
case 0x121:
|
|
case 0x123:
|
|
case 0x1e5:
|
|
case 0x1e7:
|
|
case 0x260:
|
|
case 0x1f5:
|
|
case 0x1d83:
|
|
case 0x1e21:
|
|
case 0xa7a1:
|
|
regmbc('g'); regmbc(0x11d); regmbc(0x11f);
|
|
regmbc(0x121); regmbc(0x123); regmbc(0x1e5);
|
|
regmbc(0x1e7); regmbc(0x1f5); regmbc(0x260);
|
|
regmbc(0x1d83); regmbc(0x1e21); regmbc(0xa7a1);
|
|
return;
|
|
case 'h':
|
|
case 0x125:
|
|
case 0x127:
|
|
case 0x21f:
|
|
case 0x1e23:
|
|
case 0x1e25:
|
|
case 0x1e27:
|
|
case 0x1e29:
|
|
case 0x1e2b:
|
|
case 0x1e96:
|
|
case 0x2c68:
|
|
case 0xa795:
|
|
regmbc('h'); regmbc(0x125); regmbc(0x127);
|
|
regmbc(0x21f); regmbc(0x1e23); regmbc(0x1e25);
|
|
regmbc(0x1e27); regmbc(0x1e29); regmbc(0x1e2b);
|
|
regmbc(0x1e96); regmbc(0x2c68); regmbc(0xa795);
|
|
return;
|
|
case 'i':
|
|
case 0xec:
|
|
case 0xed:
|
|
case 0xee:
|
|
case 0xef:
|
|
case 0x129:
|
|
case 0x12b:
|
|
case 0x12d:
|
|
case 0x12f:
|
|
case 0x1d0:
|
|
case 0x209:
|
|
case 0x20b:
|
|
case 0x268:
|
|
case 0x1d96:
|
|
case 0x1e2d:
|
|
case 0x1e2f:
|
|
case 0x1ec9:
|
|
case 0x1ecb:
|
|
regmbc('i'); regmbc(0xec); regmbc(0xed);
|
|
regmbc(0xee); regmbc(0xef); regmbc(0x129);
|
|
regmbc(0x12b); regmbc(0x12d); regmbc(0x12f);
|
|
regmbc(0x1d0); regmbc(0x209); regmbc(0x20b);
|
|
regmbc(0x268); regmbc(0x1d96); regmbc(0x1e2d);
|
|
regmbc(0x1e2f); regmbc(0x1ec9); regmbc(0x1ecb);
|
|
return;
|
|
case 'j':
|
|
case 0x135:
|
|
case 0x1f0:
|
|
case 0x249:
|
|
regmbc('j'); regmbc(0x135); regmbc(0x1f0);
|
|
regmbc(0x249);
|
|
return;
|
|
case 'k':
|
|
case 0x137:
|
|
case 0x199:
|
|
case 0x1e9:
|
|
case 0x1d84:
|
|
case 0x1e31:
|
|
case 0x1e33:
|
|
case 0x1e35:
|
|
case 0x2c6a:
|
|
case 0xa741:
|
|
regmbc('k'); regmbc(0x137); regmbc(0x199);
|
|
regmbc(0x1e9); regmbc(0x1d84); regmbc(0x1e31);
|
|
regmbc(0x1e33); regmbc(0x1e35); regmbc(0x2c6a);
|
|
regmbc(0xa741);
|
|
return;
|
|
case 'l':
|
|
case 0x13a:
|
|
case 0x13c:
|
|
case 0x13e:
|
|
case 0x140:
|
|
case 0x142:
|
|
case 0x19a:
|
|
case 0x1e37:
|
|
case 0x1e39:
|
|
case 0x1e3b:
|
|
case 0x1e3d:
|
|
case 0x2c61:
|
|
regmbc('l'); regmbc(0x13a); regmbc(0x13c);
|
|
regmbc(0x13e); regmbc(0x140); regmbc(0x142);
|
|
regmbc(0x19a); regmbc(0x1e37); regmbc(0x1e39);
|
|
regmbc(0x1e3b); regmbc(0x1e3d); regmbc(0x2c61);
|
|
return;
|
|
case 'm':
|
|
case 0x1d6f:
|
|
case 0x1e3f:
|
|
case 0x1e41:
|
|
case 0x1e43:
|
|
regmbc('m'); regmbc(0x1d6f); regmbc(0x1e3f);
|
|
regmbc(0x1e41); regmbc(0x1e43);
|
|
return;
|
|
case 'n':
|
|
case 0xf1:
|
|
case 0x144:
|
|
case 0x146:
|
|
case 0x148:
|
|
case 0x149:
|
|
case 0x1f9:
|
|
case 0x1d70:
|
|
case 0x1d87:
|
|
case 0x1e45:
|
|
case 0x1e47:
|
|
case 0x1e49:
|
|
case 0x1e4b:
|
|
case 0xa7a5:
|
|
regmbc('n'); regmbc(0xf1); regmbc(0x144);
|
|
regmbc(0x146); regmbc(0x148); regmbc(0x149);
|
|
regmbc(0x1f9); regmbc(0x1d70); regmbc(0x1d87);
|
|
regmbc(0x1e45); regmbc(0x1e47); regmbc(0x1e49);
|
|
regmbc(0x1e4b); regmbc(0xa7a5);
|
|
return;
|
|
case 'o':
|
|
case 0xf2:
|
|
case 0xf3:
|
|
case 0xf4:
|
|
case 0xf5:
|
|
case 0xf6:
|
|
case 0xf8:
|
|
case 0x14d:
|
|
case 0x14f:
|
|
case 0x151:
|
|
case 0x1a1:
|
|
case 0x1d2:
|
|
case 0x1eb:
|
|
case 0x1ed:
|
|
case 0x1ff:
|
|
case 0x20d:
|
|
case 0x20f:
|
|
case 0x22b:
|
|
case 0x22d:
|
|
case 0x22f:
|
|
case 0x231:
|
|
case 0x275:
|
|
case 0x1e4d:
|
|
case 0x1e4f:
|
|
case 0x1e51:
|
|
case 0x1e53:
|
|
case 0x1ecd:
|
|
case 0x1ecf:
|
|
case 0x1ed1:
|
|
case 0x1ed3:
|
|
case 0x1ed5:
|
|
case 0x1ed7:
|
|
case 0x1ed9:
|
|
case 0x1edb:
|
|
case 0x1edd:
|
|
case 0x1edf:
|
|
case 0x1ee1:
|
|
case 0x1ee3:
|
|
regmbc('o'); regmbc(0xf2); regmbc(0xf3);
|
|
regmbc(0xf4); regmbc(0xf5); regmbc(0xf6);
|
|
regmbc(0xf8); regmbc(0x14d); regmbc(0x14f);
|
|
regmbc(0x151); regmbc(0x1a1); regmbc(0x1d2);
|
|
regmbc(0x1eb); regmbc(0x1ed); regmbc(0x1ff);
|
|
regmbc(0x20d); regmbc(0x20f); regmbc(0x22b);
|
|
regmbc(0x22d); regmbc(0x22f); regmbc(0x231);
|
|
regmbc(0x275); regmbc(0x1e4d); regmbc(0x1e4f);
|
|
regmbc(0x1e51); regmbc(0x1e53); regmbc(0x1ecd);
|
|
regmbc(0x1ecf); regmbc(0x1ed1); regmbc(0x1ed3);
|
|
regmbc(0x1ed5); regmbc(0x1ed7); regmbc(0x1ed9);
|
|
regmbc(0x1edb); regmbc(0x1edd); regmbc(0x1edf);
|
|
regmbc(0x1ee1); regmbc(0x1ee3);
|
|
return;
|
|
case 'p':
|
|
case 0x1a5:
|
|
case 0x1d71:
|
|
case 0x1d88:
|
|
case 0x1d7d:
|
|
case 0x1e55:
|
|
case 0x1e57:
|
|
regmbc('p'); regmbc(0x1a5); regmbc(0x1d71);
|
|
regmbc(0x1d7d); regmbc(0x1d88); regmbc(0x1e55);
|
|
regmbc(0x1e57);
|
|
return;
|
|
case 'q':
|
|
case 0x24b:
|
|
case 0x2a0:
|
|
regmbc('q'); regmbc(0x24b); regmbc(0x2a0);
|
|
return;
|
|
case 'r':
|
|
case 0x155:
|
|
case 0x157:
|
|
case 0x159:
|
|
case 0x211:
|
|
case 0x213:
|
|
case 0x24d:
|
|
case 0x27d:
|
|
case 0x1d72:
|
|
case 0x1d73:
|
|
case 0x1d89:
|
|
case 0x1e59:
|
|
case 0x1e5b:
|
|
case 0x1e5d:
|
|
case 0x1e5f:
|
|
case 0xa7a7:
|
|
regmbc('r'); regmbc(0x155); regmbc(0x157);
|
|
regmbc(0x159); regmbc(0x211); regmbc(0x213);
|
|
regmbc(0x24d); regmbc(0x1d72); regmbc(0x1d73);
|
|
regmbc(0x1d89); regmbc(0x1e59); regmbc(0x27d);
|
|
regmbc(0x1e5b); regmbc(0x1e5d); regmbc(0x1e5f);
|
|
regmbc(0xa7a7);
|
|
return;
|
|
case 's':
|
|
case 0x15b:
|
|
case 0x15d:
|
|
case 0x15f:
|
|
case 0x161:
|
|
case 0x1e61:
|
|
case 0x219:
|
|
case 0x23f:
|
|
case 0x1d74:
|
|
case 0x1d8a:
|
|
case 0x1e63:
|
|
case 0x1e65:
|
|
case 0x1e67:
|
|
case 0x1e69:
|
|
case 0xa7a9:
|
|
regmbc('s'); regmbc(0x15b); regmbc(0x15d);
|
|
regmbc(0x15f); regmbc(0x161); regmbc(0x23f);
|
|
regmbc(0x219); regmbc(0x1d74); regmbc(0x1d8a);
|
|
regmbc(0x1e61); regmbc(0x1e63); regmbc(0x1e65);
|
|
regmbc(0x1e67); regmbc(0x1e69); regmbc(0xa7a9);
|
|
return;
|
|
case 't':
|
|
case 0x163:
|
|
case 0x165:
|
|
case 0x167:
|
|
case 0x1ab:
|
|
case 0x1ad:
|
|
case 0x21b:
|
|
case 0x288:
|
|
case 0x1d75:
|
|
case 0x1e6b:
|
|
case 0x1e6d:
|
|
case 0x1e6f:
|
|
case 0x1e71:
|
|
case 0x1e97:
|
|
case 0x2c66:
|
|
regmbc('t'); regmbc(0x163); regmbc(0x165);
|
|
regmbc(0x167); regmbc(0x1ab); regmbc(0x21b);
|
|
regmbc(0x1ad); regmbc(0x288); regmbc(0x1d75);
|
|
regmbc(0x1e6b); regmbc(0x1e6d); regmbc(0x1e6f);
|
|
regmbc(0x1e71); regmbc(0x1e97); regmbc(0x2c66);
|
|
return;
|
|
case 'u':
|
|
case 0xf9:
|
|
case 0xfa:
|
|
case 0xfb:
|
|
case 0xfc:
|
|
case 0x169:
|
|
case 0x16b:
|
|
case 0x16d:
|
|
case 0x16f:
|
|
case 0x171:
|
|
case 0x173:
|
|
case 0x1b0:
|
|
case 0x1d4:
|
|
case 0x1d6:
|
|
case 0x1d8:
|
|
case 0x1da:
|
|
case 0x1dc:
|
|
case 0x215:
|
|
case 0x217:
|
|
case 0x289:
|
|
case 0x1e73:
|
|
case 0x1d7e:
|
|
case 0x1d99:
|
|
case 0x1e75:
|
|
case 0x1e77:
|
|
case 0x1e79:
|
|
case 0x1e7b:
|
|
case 0x1ee5:
|
|
case 0x1ee7:
|
|
case 0x1ee9:
|
|
case 0x1eeb:
|
|
case 0x1eed:
|
|
case 0x1eef:
|
|
case 0x1ef1:
|
|
regmbc('u'); regmbc(0xf9); regmbc(0xfa);
|
|
regmbc(0xfb); regmbc(0xfc); regmbc(0x169);
|
|
regmbc(0x16b); regmbc(0x16d); regmbc(0x16f);
|
|
regmbc(0x171); regmbc(0x173); regmbc(0x1d6);
|
|
regmbc(0x1d8); regmbc(0x1da); regmbc(0x1dc);
|
|
regmbc(0x215); regmbc(0x217); regmbc(0x1b0);
|
|
regmbc(0x1d4); regmbc(0x289); regmbc(0x1d7e);
|
|
regmbc(0x1d99); regmbc(0x1e73); regmbc(0x1e75);
|
|
regmbc(0x1e77); regmbc(0x1e79); regmbc(0x1e7b);
|
|
regmbc(0x1ee5); regmbc(0x1ee7); regmbc(0x1ee9);
|
|
regmbc(0x1eeb); regmbc(0x1eed); regmbc(0x1eef);
|
|
regmbc(0x1ef1);
|
|
return;
|
|
case 'v':
|
|
case 0x28b:
|
|
case 0x1d8c:
|
|
case 0x1e7d:
|
|
case 0x1e7f:
|
|
regmbc('v'); regmbc(0x28b); regmbc(0x1d8c);
|
|
regmbc(0x1e7d); regmbc(0x1e7f);
|
|
return;
|
|
case 'w':
|
|
case 0x175:
|
|
case 0x1e81:
|
|
case 0x1e83:
|
|
case 0x1e85:
|
|
case 0x1e87:
|
|
case 0x1e89:
|
|
case 0x1e98:
|
|
regmbc('w'); regmbc(0x175); regmbc(0x1e81);
|
|
regmbc(0x1e83); regmbc(0x1e85); regmbc(0x1e87);
|
|
regmbc(0x1e89); regmbc(0x1e98);
|
|
return;
|
|
case 'x':
|
|
case 0x1e8b:
|
|
case 0x1e8d:
|
|
regmbc('x'); regmbc(0x1e8b); regmbc(0x1e8d);
|
|
return;
|
|
case 'y':
|
|
case 0xfd:
|
|
case 0xff:
|
|
case 0x177:
|
|
case 0x1b4:
|
|
case 0x233:
|
|
case 0x24f:
|
|
case 0x1e8f:
|
|
case 0x1e99:
|
|
case 0x1ef3:
|
|
case 0x1ef5:
|
|
case 0x1ef7:
|
|
case 0x1ef9:
|
|
regmbc('y'); regmbc(0xfd); regmbc(0xff);
|
|
regmbc(0x177); regmbc(0x1b4); regmbc(0x233);
|
|
regmbc(0x24f); regmbc(0x1e8f); regmbc(0x1e99);
|
|
regmbc(0x1ef3); regmbc(0x1ef5); regmbc(0x1ef7);
|
|
regmbc(0x1ef9);
|
|
return;
|
|
case 'z':
|
|
case 0x17a:
|
|
case 0x17c:
|
|
case 0x17e:
|
|
case 0x1b6:
|
|
case 0x1d76:
|
|
case 0x1d8e:
|
|
case 0x1e91:
|
|
case 0x1e93:
|
|
case 0x1e95:
|
|
case 0x2c6c:
|
|
regmbc('z'); regmbc(0x17a); regmbc(0x17c);
|
|
regmbc(0x17e); regmbc(0x1b6); regmbc(0x1d76);
|
|
regmbc(0x1d8e); regmbc(0x1e91); regmbc(0x1e93);
|
|
regmbc(0x1e95); regmbc(0x2c6c);
|
|
return;
|
|
}
|
|
}
|
|
regmbc(c);
|
|
}
|
|
|
|
// Emit a node.
|
|
// Return pointer to generated code.
|
|
static uint8_t *regnode(int op)
|
|
{
|
|
uint8_t *ret;
|
|
|
|
ret = regcode;
|
|
if (ret == JUST_CALC_SIZE) {
|
|
regsize += 3;
|
|
} else {
|
|
*regcode++ = (uint8_t)op;
|
|
*regcode++ = NUL; // Null "next" pointer.
|
|
*regcode++ = NUL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// Write a four bytes number at "p" and return pointer to the next char.
|
|
static uint8_t *re_put_uint32(uint8_t *p, uint32_t val)
|
|
{
|
|
*p++ = (uint8_t)((val >> 24) & 0377);
|
|
*p++ = (uint8_t)((val >> 16) & 0377);
|
|
*p++ = (uint8_t)((val >> 8) & 0377);
|
|
*p++ = (uint8_t)(val & 0377);
|
|
return p;
|
|
}
|
|
|
|
// regnext - dig the "next" pointer out of a node
|
|
// Returns NULL when calculating size, when there is no next item and when
|
|
// there is an error.
|
|
static uint8_t *regnext(uint8_t *p)
|
|
FUNC_ATTR_NONNULL_ALL
|
|
{
|
|
int offset;
|
|
|
|
if (p == JUST_CALC_SIZE || reg_toolong) {
|
|
return NULL;
|
|
}
|
|
|
|
offset = NEXT(p);
|
|
if (offset == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
if (OP(p) == BACK) {
|
|
return p - offset;
|
|
} else {
|
|
return p + offset;
|
|
}
|
|
}
|
|
|
|
// Set the next-pointer at the end of a node chain.
|
|
static void regtail(uint8_t *p, const uint8_t *val)
|
|
{
|
|
int offset;
|
|
|
|
if (p == JUST_CALC_SIZE) {
|
|
return;
|
|
}
|
|
|
|
// Find last node.
|
|
uint8_t *scan = p;
|
|
while (true) {
|
|
uint8_t *temp = regnext(scan);
|
|
if (temp == NULL) {
|
|
break;
|
|
}
|
|
scan = temp;
|
|
}
|
|
|
|
if (OP(scan) == BACK) {
|
|
offset = (int)(scan - val);
|
|
} else {
|
|
offset = (int)(val - scan);
|
|
}
|
|
// When the offset uses more than 16 bits it can no longer fit in the two
|
|
// bytes available. Use a global flag to avoid having to check return
|
|
// values in too many places.
|
|
if (offset > 0xffff) {
|
|
reg_toolong = true;
|
|
} else {
|
|
*(scan + 1) = (uint8_t)(((unsigned)offset >> 8) & 0377);
|
|
*(scan + 2) = (uint8_t)(offset & 0377);
|
|
}
|
|
}
|
|
|
|
// Like regtail, on item after a BRANCH; nop if none.
|
|
static void regoptail(uint8_t *p, uint8_t *val)
|
|
{
|
|
// When op is neither BRANCH nor BRACE_COMPLEX0-9, it is "operandless"
|
|
if (p == NULL || p == JUST_CALC_SIZE
|
|
|| (OP(p) != BRANCH
|
|
&& (OP(p) < BRACE_COMPLEX || OP(p) > BRACE_COMPLEX + 9))) {
|
|
return;
|
|
}
|
|
regtail(OPERAND(p), val);
|
|
}
|
|
|
|
// Insert an operator in front of already-emitted operand
|
|
//
|
|
// Means relocating the operand.
|
|
static void reginsert(int op, uint8_t *opnd)
|
|
{
|
|
uint8_t *src;
|
|
uint8_t *dst;
|
|
uint8_t *place;
|
|
|
|
if (regcode == JUST_CALC_SIZE) {
|
|
regsize += 3;
|
|
return;
|
|
}
|
|
src = regcode;
|
|
regcode += 3;
|
|
dst = regcode;
|
|
while (src > opnd) {
|
|
*--dst = *--src;
|
|
}
|
|
|
|
place = opnd; // Op node, where operand used to be.
|
|
*place++ = (uint8_t)op;
|
|
*place++ = NUL;
|
|
*place = NUL;
|
|
}
|
|
|
|
// Insert an operator in front of already-emitted operand.
|
|
// Add a number to the operator.
|
|
static void reginsert_nr(int op, int64_t val, uint8_t *opnd)
|
|
{
|
|
uint8_t *src;
|
|
uint8_t *dst;
|
|
uint8_t *place;
|
|
|
|
if (regcode == JUST_CALC_SIZE) {
|
|
regsize += 7;
|
|
return;
|
|
}
|
|
src = regcode;
|
|
regcode += 7;
|
|
dst = regcode;
|
|
while (src > opnd) {
|
|
*--dst = *--src;
|
|
}
|
|
|
|
place = opnd; // Op node, where operand used to be.
|
|
*place++ = (uint8_t)op;
|
|
*place++ = NUL;
|
|
*place++ = NUL;
|
|
assert(val >= 0 && (uintmax_t)val <= UINT32_MAX);
|
|
re_put_uint32(place, (uint32_t)val);
|
|
}
|
|
|
|
// Insert an operator in front of already-emitted operand.
|
|
// The operator has the given limit values as operands. Also set next pointer.
|
|
//
|
|
// Means relocating the operand.
|
|
static void reginsert_limits(int op, int64_t minval, int64_t maxval, uint8_t *opnd)
|
|
{
|
|
uint8_t *src;
|
|
uint8_t *dst;
|
|
uint8_t *place;
|
|
|
|
if (regcode == JUST_CALC_SIZE) {
|
|
regsize += 11;
|
|
return;
|
|
}
|
|
src = regcode;
|
|
regcode += 11;
|
|
dst = regcode;
|
|
while (src > opnd) {
|
|
*--dst = *--src;
|
|
}
|
|
|
|
place = opnd; // Op node, where operand used to be.
|
|
*place++ = (uint8_t)op;
|
|
*place++ = NUL;
|
|
*place++ = NUL;
|
|
assert(minval >= 0 && (uintmax_t)minval <= UINT32_MAX);
|
|
place = re_put_uint32(place, (uint32_t)minval);
|
|
assert(maxval >= 0 && (uintmax_t)maxval <= UINT32_MAX);
|
|
place = re_put_uint32(place, (uint32_t)maxval);
|
|
regtail(opnd, place);
|
|
}
|
|
|
|
/// Return true if the back reference is legal. We must have seen the close
|
|
/// brace.
|
|
/// TODO(vim): Should also check that we don't refer to something repeated
|
|
/// (+*=): what instance of the repetition should we match?
|
|
static int seen_endbrace(int refnum)
|
|
{
|
|
if (!had_endbrace[refnum]) {
|
|
uint8_t *p;
|
|
|
|
// Trick: check if "@<=" or "@<!" follows, in which case
|
|
// the \1 can appear before the referenced match.
|
|
for (p = (uint8_t *)regparse; *p != NUL; p++) {
|
|
if (p[0] == '@' && p[1] == '<' && (p[2] == '!' || p[2] == '=')) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (*p == NUL) {
|
|
emsg(_("E65: Illegal back reference"));
|
|
rc_did_emsg = true;
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Parse the lowest level.
|
|
//
|
|
// Optimization: gobbles an entire sequence of ordinary characters so that
|
|
// it can turn them into a single node, which is smaller to store and
|
|
// faster to run. Don't do this when one_exactly is set.
|
|
static uint8_t *regatom(int *flagp)
|
|
{
|
|
uint8_t *ret;
|
|
int flags;
|
|
int c;
|
|
uint8_t *p;
|
|
int extra = 0;
|
|
int save_prev_at_start = prev_at_start;
|
|
|
|
*flagp = WORST; // Tentatively.
|
|
|
|
c = getchr();
|
|
switch (c) {
|
|
case Magic('^'):
|
|
ret = regnode(BOL);
|
|
break;
|
|
|
|
case Magic('$'):
|
|
ret = regnode(EOL);
|
|
had_eol = true;
|
|
break;
|
|
|
|
case Magic('<'):
|
|
ret = regnode(BOW);
|
|
break;
|
|
|
|
case Magic('>'):
|
|
ret = regnode(EOW);
|
|
break;
|
|
|
|
case Magic('_'):
|
|
c = no_Magic(getchr());
|
|
if (c == '^') { // "\_^" is start-of-line
|
|
ret = regnode(BOL);
|
|
break;
|
|
}
|
|
if (c == '$') { // "\_$" is end-of-line
|
|
ret = regnode(EOL);
|
|
had_eol = true;
|
|
break;
|
|
}
|
|
|
|
extra = ADD_NL;
|
|
*flagp |= HASNL;
|
|
|
|
// "\_[" is character range plus newline
|
|
if (c == '[') {
|
|
goto collection;
|
|
}
|
|
|
|
// "\_x" is character class plus newline
|
|
FALLTHROUGH;
|
|
|
|
// Character classes.
|
|
case Magic('.'):
|
|
case Magic('i'):
|
|
case Magic('I'):
|
|
case Magic('k'):
|
|
case Magic('K'):
|
|
case Magic('f'):
|
|
case Magic('F'):
|
|
case Magic('p'):
|
|
case Magic('P'):
|
|
case Magic('s'):
|
|
case Magic('S'):
|
|
case Magic('d'):
|
|
case Magic('D'):
|
|
case Magic('x'):
|
|
case Magic('X'):
|
|
case Magic('o'):
|
|
case Magic('O'):
|
|
case Magic('w'):
|
|
case Magic('W'):
|
|
case Magic('h'):
|
|
case Magic('H'):
|
|
case Magic('a'):
|
|
case Magic('A'):
|
|
case Magic('l'):
|
|
case Magic('L'):
|
|
case Magic('u'):
|
|
case Magic('U'):
|
|
p = (uint8_t *)vim_strchr((char *)classchars, no_Magic(c));
|
|
if (p == NULL) {
|
|
EMSG_RET_NULL(_(e_invalid_use_of_underscore));
|
|
}
|
|
// When '.' is followed by a composing char ignore the dot, so that
|
|
// the composing char is matched here.
|
|
if (c == Magic('.') && utf_iscomposing(peekchr())) {
|
|
c = getchr();
|
|
goto do_multibyte;
|
|
}
|
|
ret = regnode(classcodes[p - classchars] + extra);
|
|
*flagp |= HASWIDTH | SIMPLE;
|
|
break;
|
|
|
|
case Magic('n'):
|
|
if (reg_string) {
|
|
// In a string "\n" matches a newline character.
|
|
ret = regnode(EXACTLY);
|
|
regc(NL);
|
|
regc(NUL);
|
|
*flagp |= HASWIDTH | SIMPLE;
|
|
} else {
|
|
// In buffer text "\n" matches the end of a line.
|
|
ret = regnode(NEWL);
|
|
*flagp |= HASWIDTH | HASNL;
|
|
}
|
|
break;
|
|
|
|
case Magic('('):
|
|
if (one_exactly) {
|
|
EMSG_ONE_RET_NULL;
|
|
}
|
|
ret = reg(REG_PAREN, &flags);
|
|
if (ret == NULL) {
|
|
return NULL;
|
|
}
|
|
*flagp |= flags & (HASWIDTH | SPSTART | HASNL | HASLOOKBH);
|
|
break;
|
|
|
|
case NUL:
|
|
case Magic('|'):
|
|
case Magic('&'):
|
|
case Magic(')'):
|
|
if (one_exactly) {
|
|
EMSG_ONE_RET_NULL;
|
|
}
|
|
IEMSG_RET_NULL(_(e_internal)); // Supposed to be caught earlier.
|
|
// NOTREACHED
|
|
|
|
case Magic('='):
|
|
case Magic('?'):
|
|
case Magic('+'):
|
|
case Magic('@'):
|
|
case Magic('{'):
|
|
case Magic('*'):
|
|
c = no_Magic(c);
|
|
EMSG3_RET_NULL(_("E64: %s%c follows nothing"),
|
|
(c == '*' ? reg_magic >= MAGIC_ON : reg_magic == MAGIC_ALL), c);
|
|
// NOTREACHED
|
|
|
|
case Magic('~'): // previous substitute pattern
|
|
if (reg_prev_sub != NULL) {
|
|
uint8_t *lp;
|
|
|
|
ret = regnode(EXACTLY);
|
|
lp = (uint8_t *)reg_prev_sub;
|
|
while (*lp != NUL) {
|
|
regc(*lp++);
|
|
}
|
|
regc(NUL);
|
|
if (*reg_prev_sub != NUL) {
|
|
*flagp |= HASWIDTH;
|
|
if ((lp - (uint8_t *)reg_prev_sub) == 1) {
|
|
*flagp |= SIMPLE;
|
|
}
|
|
}
|
|
} else {
|
|
EMSG_RET_NULL(_(e_nopresub));
|
|
}
|
|
break;
|
|
|
|
case Magic('1'):
|
|
case Magic('2'):
|
|
case Magic('3'):
|
|
case Magic('4'):
|
|
case Magic('5'):
|
|
case Magic('6'):
|
|
case Magic('7'):
|
|
case Magic('8'):
|
|
case Magic('9'): {
|
|
int refnum;
|
|
|
|
refnum = c - Magic('0');
|
|
if (!seen_endbrace(refnum)) {
|
|
return NULL;
|
|
}
|
|
ret = regnode(BACKREF + refnum);
|
|
}
|
|
break;
|
|
|
|
case Magic('z'):
|
|
c = no_Magic(getchr());
|
|
switch (c) {
|
|
case '(':
|
|
if ((reg_do_extmatch & REX_SET) == 0) {
|
|
EMSG_RET_NULL(_(e_z_not_allowed));
|
|
}
|
|
if (one_exactly) {
|
|
EMSG_ONE_RET_NULL;
|
|
}
|
|
ret = reg(REG_ZPAREN, &flags);
|
|
if (ret == NULL) {
|
|
return NULL;
|
|
}
|
|
*flagp |= flags & (HASWIDTH|SPSTART|HASNL|HASLOOKBH);
|
|
re_has_z = REX_SET;
|
|
break;
|
|
|
|
case '1':
|
|
case '2':
|
|
case '3':
|
|
case '4':
|
|
case '5':
|
|
case '6':
|
|
case '7':
|
|
case '8':
|
|
case '9':
|
|
if ((reg_do_extmatch & REX_USE) == 0) {
|
|
EMSG_RET_NULL(_(e_z1_not_allowed));
|
|
}
|
|
ret = regnode(ZREF + c - '0');
|
|
re_has_z = REX_USE;
|
|
break;
|
|
|
|
case 's':
|
|
ret = regnode(MOPEN + 0);
|
|
if (!re_mult_next("\\zs")) {
|
|
return NULL;
|
|
}
|
|
break;
|
|
|
|
case 'e':
|
|
ret = regnode(MCLOSE + 0);
|
|
if (!re_mult_next("\\ze")) {
|
|
return NULL;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
EMSG_RET_NULL(_("E68: Invalid character after \\z"));
|
|
}
|
|
break;
|
|
|
|
case Magic('%'):
|
|
c = no_Magic(getchr());
|
|
switch (c) {
|
|
// () without a back reference
|
|
case '(':
|
|
if (one_exactly) {
|
|
EMSG_ONE_RET_NULL;
|
|
}
|
|
ret = reg(REG_NPAREN, &flags);
|
|
if (ret == NULL) {
|
|
return NULL;
|
|
}
|
|
*flagp |= flags & (HASWIDTH | SPSTART | HASNL | HASLOOKBH);
|
|
break;
|
|
|
|
// Catch \%^ and \%$ regardless of where they appear in the
|
|
// pattern -- regardless of whether or not it makes sense.
|
|
case '^':
|
|
ret = regnode(RE_BOF);
|
|
break;
|
|
|
|
case '$':
|
|
ret = regnode(RE_EOF);
|
|
break;
|
|
|
|
case '#':
|
|
if (regparse[0] == '=' && regparse[1] >= 48 && regparse[1] <= 50) {
|
|
// misplaced \%#=1
|
|
semsg(_(e_atom_engine_must_be_at_start_of_pattern), regparse[1]);
|
|
return FAIL;
|
|
}
|
|
ret = regnode(CURSOR);
|
|
break;
|
|
|
|
case 'V':
|
|
ret = regnode(RE_VISUAL);
|
|
break;
|
|
|
|
case 'C':
|
|
ret = regnode(RE_COMPOSING);
|
|
break;
|
|
|
|
// \%[abc]: Emit as a list of branches, all ending at the last
|
|
// branch which matches nothing.
|
|
case '[':
|
|
if (one_exactly) { // doesn't nest
|
|
EMSG_ONE_RET_NULL;
|
|
}
|
|
{
|
|
uint8_t *lastbranch;
|
|
uint8_t *lastnode = NULL;
|
|
uint8_t *br;
|
|
|
|
ret = NULL;
|
|
while ((c = getchr()) != ']') {
|
|
if (c == NUL) {
|
|
EMSG2_RET_NULL(_(e_missing_sb),
|
|
reg_magic == MAGIC_ALL);
|
|
}
|
|
br = regnode(BRANCH);
|
|
if (ret == NULL) {
|
|
ret = br;
|
|
} else {
|
|
regtail(lastnode, br);
|
|
if (reg_toolong) {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
ungetchr();
|
|
one_exactly = true;
|
|
lastnode = regatom(flagp);
|
|
one_exactly = false;
|
|
if (lastnode == NULL) {
|
|
return NULL;
|
|
}
|
|
}
|
|
if (ret == NULL) {
|
|
EMSG2_RET_NULL(_(e_empty_sb),
|
|
reg_magic == MAGIC_ALL);
|
|
}
|
|
lastbranch = regnode(BRANCH);
|
|
br = regnode(NOTHING);
|
|
if (ret != JUST_CALC_SIZE) {
|
|
regtail(lastnode, br);
|
|
regtail(lastbranch, br);
|
|
// connect all branches to the NOTHING
|
|
// branch at the end
|
|
for (br = ret; br != lastnode;) {
|
|
if (OP(br) == BRANCH) {
|
|
regtail(br, lastbranch);
|
|
if (reg_toolong) {
|
|
return NULL;
|
|
}
|
|
br = OPERAND(br);
|
|
} else {
|
|
br = regnext(br);
|
|
}
|
|
}
|
|
}
|
|
*flagp &= ~(HASWIDTH | SIMPLE);
|
|
break;
|
|
}
|
|
|
|
case 'd': // %d123 decimal
|
|
case 'o': // %o123 octal
|
|
case 'x': // %xab hex 2
|
|
case 'u': // %uabcd hex 4
|
|
case 'U': // %U1234abcd hex 8
|
|
{
|
|
int64_t i;
|
|
|
|
switch (c) {
|
|
case 'd':
|
|
i = getdecchrs(); break;
|
|
case 'o':
|
|
i = getoctchrs(); break;
|
|
case 'x':
|
|
i = gethexchrs(2); break;
|
|
case 'u':
|
|
i = gethexchrs(4); break;
|
|
case 'U':
|
|
i = gethexchrs(8); break;
|
|
default:
|
|
i = -1; break;
|
|
}
|
|
|
|
if (i < 0 || i > INT_MAX) {
|
|
EMSG2_RET_NULL(_("E678: Invalid character after %s%%[dxouU]"),
|
|
reg_magic == MAGIC_ALL);
|
|
}
|
|
if (use_multibytecode((int)i)) {
|
|
ret = regnode(MULTIBYTECODE);
|
|
} else {
|
|
ret = regnode(EXACTLY);
|
|
}
|
|
if (i == 0) {
|
|
regc(0x0a);
|
|
} else {
|
|
regmbc((int)i);
|
|
}
|
|
regc(NUL);
|
|
*flagp |= HASWIDTH;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
if (ascii_isdigit(c) || c == '<' || c == '>' || c == '\'' || c == '.') {
|
|
uint32_t n = 0;
|
|
int cmp;
|
|
bool cur = false;
|
|
bool got_digit = false;
|
|
|
|
cmp = c;
|
|
if (cmp == '<' || cmp == '>') {
|
|
c = getchr();
|
|
}
|
|
if (no_Magic(c) == '.') {
|
|
cur = true;
|
|
c = getchr();
|
|
}
|
|
while (ascii_isdigit(c)) {
|
|
got_digit = true;
|
|
n = n * 10 + (uint32_t)(c - '0');
|
|
c = getchr();
|
|
}
|
|
if (c == '\'' && n == 0) {
|
|
// "\%'m", "\%<'m" and "\%>'m": Mark
|
|
c = getchr();
|
|
ret = regnode(RE_MARK);
|
|
if (ret == JUST_CALC_SIZE) {
|
|
regsize += 2;
|
|
} else {
|
|
*regcode++ = (uint8_t)c;
|
|
*regcode++ = (uint8_t)cmp;
|
|
}
|
|
break;
|
|
} else if ((c == 'l' || c == 'c' || c == 'v') && (cur || got_digit)) {
|
|
if (cur && n) {
|
|
semsg(_(e_regexp_number_after_dot_pos_search_chr), no_Magic(c));
|
|
rc_did_emsg = true;
|
|
return NULL;
|
|
}
|
|
if (c == 'l') {
|
|
if (cur) {
|
|
n = (uint32_t)curwin->w_cursor.lnum;
|
|
}
|
|
ret = regnode(RE_LNUM);
|
|
if (save_prev_at_start) {
|
|
at_start = true;
|
|
}
|
|
} else if (c == 'c') {
|
|
if (cur) {
|
|
n = (uint32_t)curwin->w_cursor.col;
|
|
n++;
|
|
}
|
|
ret = regnode(RE_COL);
|
|
} else {
|
|
if (cur) {
|
|
colnr_T vcol = 0;
|
|
getvvcol(curwin, &curwin->w_cursor, NULL, NULL, &vcol);
|
|
n = (uint32_t)(++vcol);
|
|
}
|
|
ret = regnode(RE_VCOL);
|
|
}
|
|
if (ret == JUST_CALC_SIZE) {
|
|
regsize += 5;
|
|
} else {
|
|
// put the number and the optional
|
|
// comparator after the opcode
|
|
regcode = re_put_uint32(regcode, n);
|
|
*regcode++ = (uint8_t)cmp;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
EMSG2_RET_NULL(_("E71: Invalid character after %s%%"),
|
|
reg_magic == MAGIC_ALL);
|
|
}
|
|
break;
|
|
|
|
case Magic('['):
|
|
collection:
|
|
{
|
|
uint8_t *lp;
|
|
|
|
// If there is no matching ']', we assume the '[' is a normal
|
|
// character. This makes 'incsearch' and ":help [" work.
|
|
lp = (uint8_t *)skip_anyof(regparse);
|
|
if (*lp == ']') { // there is a matching ']'
|
|
int startc = -1; // > 0 when next '-' is a range
|
|
int endc;
|
|
|
|
// In a character class, different parsing rules apply.
|
|
// Not even \ is special anymore, nothing is.
|
|
if (*regparse == '^') { // Complement of range.
|
|
ret = regnode(ANYBUT + extra);
|
|
regparse++;
|
|
} else {
|
|
ret = regnode(ANYOF + extra);
|
|
}
|
|
|
|
// At the start ']' and '-' mean the literal character.
|
|
if (*regparse == ']' || *regparse == '-') {
|
|
startc = (uint8_t)(*regparse);
|
|
regc(*regparse++);
|
|
}
|
|
|
|
while (*regparse != NUL && *regparse != ']') {
|
|
if (*regparse == '-') {
|
|
regparse++;
|
|
// The '-' is not used for a range at the end and
|
|
// after or before a '\n'.
|
|
if (*regparse == ']' || *regparse == NUL
|
|
|| startc == -1
|
|
|| (regparse[0] == '\\' && regparse[1] == 'n')) {
|
|
regc('-');
|
|
startc = '-'; // [--x] is a range
|
|
} else {
|
|
// Also accept "a-[.z.]"
|
|
endc = 0;
|
|
if (*regparse == '[') {
|
|
endc = get_coll_element(®parse);
|
|
}
|
|
if (endc == 0) {
|
|
endc = mb_ptr2char_adv((const char **)®parse);
|
|
}
|
|
|
|
// Handle \o40, \x20 and \u20AC style sequences
|
|
if (endc == '\\' && !reg_cpo_lit) {
|
|
endc = coll_get_char();
|
|
}
|
|
|
|
if (startc > endc) {
|
|
EMSG_RET_NULL(_(e_reverse_range));
|
|
}
|
|
if (utf_char2len(startc) > 1
|
|
|| utf_char2len(endc) > 1) {
|
|
// Limit to a range of 256 chars
|
|
if (endc > startc + 256) {
|
|
EMSG_RET_NULL(_(e_large_class));
|
|
}
|
|
while (++startc <= endc) {
|
|
regmbc(startc);
|
|
}
|
|
} else {
|
|
while (++startc <= endc) {
|
|
regc(startc);
|
|
}
|
|
}
|
|
startc = -1;
|
|
}
|
|
}
|
|
// Only "\]", "\^", "\]" and "\\" are special in Vi. Vim
|
|
// accepts "\t", "\e", etc., but only when the 'l' flag in
|
|
// 'cpoptions' is not included.
|
|
else if (*regparse == '\\'
|
|
&& (vim_strchr(REGEXP_INRANGE, (uint8_t)regparse[1]) != NULL
|
|
|| (!reg_cpo_lit
|
|
&& vim_strchr(REGEXP_ABBR,
|
|
(uint8_t)regparse[1]) != NULL))) {
|
|
regparse++;
|
|
if (*regparse == 'n') {
|
|
// '\n' in range: also match NL
|
|
if (ret != JUST_CALC_SIZE) {
|
|
// Using \n inside [^] does not change what
|
|
// matches. "[^\n]" is the same as ".".
|
|
if (*ret == ANYOF) {
|
|
*ret = ANYOF + ADD_NL;
|
|
*flagp |= HASNL;
|
|
}
|
|
// else: must have had a \n already
|
|
}
|
|
regparse++;
|
|
startc = -1;
|
|
} else if (*regparse == 'd'
|
|
|| *regparse == 'o'
|
|
|| *regparse == 'x'
|
|
|| *regparse == 'u'
|
|
|| *regparse == 'U') {
|
|
startc = coll_get_char();
|
|
if (startc == 0) {
|
|
regc(0x0a);
|
|
} else {
|
|
regmbc(startc);
|
|
}
|
|
} else {
|
|
startc = backslash_trans(*regparse++);
|
|
regc(startc);
|
|
}
|
|
} else if (*regparse == '[') {
|
|
int c_class;
|
|
int cu;
|
|
|
|
c_class = get_char_class(®parse);
|
|
startc = -1;
|
|
// Characters assumed to be 8 bits!
|
|
switch (c_class) {
|
|
case CLASS_NONE:
|
|
c_class = get_equi_class(®parse);
|
|
if (c_class != 0) {
|
|
// produce equivalence class
|
|
reg_equi_class(c_class);
|
|
} else if ((c_class = get_coll_element(®parse)) != 0) {
|
|
// produce a collating element
|
|
regmbc(c_class);
|
|
} else {
|
|
// literal '[', allow [[-x] as a range
|
|
startc = (uint8_t)(*regparse++);
|
|
regc(startc);
|
|
}
|
|
break;
|
|
case CLASS_ALNUM:
|
|
for (cu = 1; cu < 128; cu++) {
|
|
if (isalnum(cu)) {
|
|
regmbc(cu);
|
|
}
|
|
}
|
|
break;
|
|
case CLASS_ALPHA:
|
|
for (cu = 1; cu < 128; cu++) {
|
|
if (isalpha(cu)) {
|
|
regmbc(cu);
|
|
}
|
|
}
|
|
break;
|
|
case CLASS_BLANK:
|
|
regc(' ');
|
|
regc('\t');
|
|
break;
|
|
case CLASS_CNTRL:
|
|
for (cu = 1; cu <= 127; cu++) {
|
|
if (iscntrl(cu)) {
|
|
regmbc(cu);
|
|
}
|
|
}
|
|
break;
|
|
case CLASS_DIGIT:
|
|
for (cu = 1; cu <= 127; cu++) {
|
|
if (ascii_isdigit(cu)) {
|
|
regmbc(cu);
|
|
}
|
|
}
|
|
break;
|
|
case CLASS_GRAPH:
|
|
for (cu = 1; cu <= 127; cu++) {
|
|
if (isgraph(cu)) {
|
|
regmbc(cu);
|
|
}
|
|
}
|
|
break;
|
|
case CLASS_LOWER:
|
|
for (cu = 1; cu <= 255; cu++) {
|
|
if (mb_islower(cu) && cu != 170 && cu != 186) {
|
|
regmbc(cu);
|
|
}
|
|
}
|
|
break;
|
|
case CLASS_PRINT:
|
|
for (cu = 1; cu <= 255; cu++) {
|
|
if (vim_isprintc(cu)) {
|
|
regmbc(cu);
|
|
}
|
|
}
|
|
break;
|
|
case CLASS_PUNCT:
|
|
for (cu = 1; cu < 128; cu++) {
|
|
if (ispunct(cu)) {
|
|
regmbc(cu);
|
|
}
|
|
}
|
|
break;
|
|
case CLASS_SPACE:
|
|
for (cu = 9; cu <= 13; cu++) {
|
|
regc(cu);
|
|
}
|
|
regc(' ');
|
|
break;
|
|
case CLASS_UPPER:
|
|
for (cu = 1; cu <= 255; cu++) {
|
|
if (mb_isupper(cu)) {
|
|
regmbc(cu);
|
|
}
|
|
}
|
|
break;
|
|
case CLASS_XDIGIT:
|
|
for (cu = 1; cu <= 255; cu++) {
|
|
if (ascii_isxdigit(cu)) {
|
|
regmbc(cu);
|
|
}
|
|
}
|
|
break;
|
|
case CLASS_TAB:
|
|
regc('\t');
|
|
break;
|
|
case CLASS_RETURN:
|
|
regc('\r');
|
|
break;
|
|
case CLASS_BACKSPACE:
|
|
regc('\b');
|
|
break;
|
|
case CLASS_ESCAPE:
|
|
regc(ESC);
|
|
break;
|
|
case CLASS_IDENT:
|
|
for (cu = 1; cu <= 255; cu++) {
|
|
if (vim_isIDc(cu)) {
|
|
regmbc(cu);
|
|
}
|
|
}
|
|
break;
|
|
case CLASS_KEYWORD:
|
|
for (cu = 1; cu <= 255; cu++) {
|
|
if (reg_iswordc(cu)) {
|
|
regmbc(cu);
|
|
}
|
|
}
|
|
break;
|
|
case CLASS_FNAME:
|
|
for (cu = 1; cu <= 255; cu++) {
|
|
if (vim_isfilec(cu)) {
|
|
regmbc(cu);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
} else {
|
|
// produce a multibyte character, including any
|
|
// following composing characters.
|
|
startc = utf_ptr2char(regparse);
|
|
int len = utfc_ptr2len(regparse);
|
|
if (utf_char2len(startc) != len) {
|
|
// composing chars
|
|
startc = -1;
|
|
}
|
|
while (--len >= 0) {
|
|
regc(*regparse++);
|
|
}
|
|
}
|
|
}
|
|
regc(NUL);
|
|
prevchr_len = 1; // last char was the ']'
|
|
if (*regparse != ']') {
|
|
EMSG_RET_NULL(_(e_toomsbra)); // Cannot happen?
|
|
}
|
|
skipchr(); // let's be friends with the lexer again
|
|
*flagp |= HASWIDTH | SIMPLE;
|
|
break;
|
|
} else if (reg_strict) {
|
|
EMSG2_RET_NULL(_(e_missingbracket), reg_magic > MAGIC_OFF);
|
|
}
|
|
}
|
|
FALLTHROUGH;
|
|
|
|
default: {
|
|
int len;
|
|
|
|
// A multi-byte character is handled as a separate atom if it's
|
|
// before a multi and when it's a composing char.
|
|
if (use_multibytecode(c)) {
|
|
do_multibyte:
|
|
ret = regnode(MULTIBYTECODE);
|
|
regmbc(c);
|
|
*flagp |= HASWIDTH | SIMPLE;
|
|
break;
|
|
}
|
|
|
|
ret = regnode(EXACTLY);
|
|
|
|
// Append characters as long as:
|
|
// - there is no following multi, we then need the character in
|
|
// front of it as a single character operand
|
|
// - not running into a Magic character
|
|
// - "one_exactly" is not set
|
|
// But always emit at least one character. Might be a Multi,
|
|
// e.g., a "[" without matching "]".
|
|
for (len = 0; c != NUL && (len == 0
|
|
|| (re_multi_type(peekchr()) == NOT_MULTI
|
|
&& !one_exactly
|
|
&& !is_Magic(c))); len++) {
|
|
c = no_Magic(c);
|
|
{
|
|
regmbc(c);
|
|
{
|
|
int l;
|
|
|
|
// Need to get composing character too.
|
|
while (true) {
|
|
l = utf_ptr2len(regparse);
|
|
if (!utf_composinglike(regparse, regparse + l)) {
|
|
break;
|
|
}
|
|
regmbc(utf_ptr2char(regparse));
|
|
skipchr();
|
|
}
|
|
}
|
|
}
|
|
c = getchr();
|
|
}
|
|
ungetchr();
|
|
|
|
regc(NUL);
|
|
*flagp |= HASWIDTH;
|
|
if (len == 1) {
|
|
*flagp |= SIMPLE;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Parse something followed by possible [*+=].
|
|
//
|
|
// Note that the branching code sequences used for = and the general cases
|
|
// of * and + are somewhat optimized: they use the same NOTHING node as
|
|
// both the endmarker for their branch list and the body of the last branch.
|
|
// It might seem that this node could be dispensed with entirely, but the
|
|
// endmarker role is not redundant.
|
|
static uint8_t *regpiece(int *flagp)
|
|
{
|
|
uint8_t *ret;
|
|
int op;
|
|
uint8_t *next;
|
|
int flags;
|
|
int minval;
|
|
int maxval;
|
|
|
|
ret = regatom(&flags);
|
|
if (ret == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
op = peekchr();
|
|
if (re_multi_type(op) == NOT_MULTI) {
|
|
*flagp = flags;
|
|
return ret;
|
|
}
|
|
// default flags
|
|
*flagp = (WORST | SPSTART | (flags & (HASNL | HASLOOKBH)));
|
|
|
|
skipchr();
|
|
switch (op) {
|
|
case Magic('*'):
|
|
if (flags & SIMPLE) {
|
|
reginsert(STAR, ret);
|
|
} else {
|
|
// Emit x* as (x&|), where & means "self".
|
|
reginsert(BRANCH, ret); // Either x
|
|
regoptail(ret, regnode(BACK)); // and loop
|
|
regoptail(ret, ret); // back
|
|
regtail(ret, regnode(BRANCH)); // or
|
|
regtail(ret, regnode(NOTHING)); // null.
|
|
}
|
|
break;
|
|
|
|
case Magic('+'):
|
|
if (flags & SIMPLE) {
|
|
reginsert(PLUS, ret);
|
|
} else {
|
|
// Emit x+ as x(&|), where & means "self".
|
|
next = regnode(BRANCH); // Either
|
|
regtail(ret, next);
|
|
regtail(regnode(BACK), ret); // loop back
|
|
regtail(next, regnode(BRANCH)); // or
|
|
regtail(ret, regnode(NOTHING)); // null.
|
|
}
|
|
*flagp = (WORST | HASWIDTH | (flags & (HASNL | HASLOOKBH)));
|
|
break;
|
|
|
|
case Magic('@'): {
|
|
int lop = END;
|
|
int64_t nr = getdecchrs();
|
|
|
|
switch (no_Magic(getchr())) {
|
|
case '=':
|
|
lop = MATCH; break; // \@=
|
|
case '!':
|
|
lop = NOMATCH; break; // \@!
|
|
case '>':
|
|
lop = SUBPAT; break; // \@>
|
|
case '<':
|
|
switch (no_Magic(getchr())) {
|
|
case '=':
|
|
lop = BEHIND; break; // \@<=
|
|
case '!':
|
|
lop = NOBEHIND; break; // \@<!
|
|
}
|
|
}
|
|
if (lop == END) {
|
|
EMSG2_RET_NULL(_(e_invalid_character_after_str_at),
|
|
reg_magic == MAGIC_ALL);
|
|
}
|
|
// Look behind must match with behind_pos.
|
|
if (lop == BEHIND || lop == NOBEHIND) {
|
|
regtail(ret, regnode(BHPOS));
|
|
*flagp |= HASLOOKBH;
|
|
}
|
|
regtail(ret, regnode(END)); // operand ends
|
|
if (lop == BEHIND || lop == NOBEHIND) {
|
|
if (nr < 0) {
|
|
nr = 0; // no limit is same as zero limit
|
|
}
|
|
reginsert_nr(lop, (uint32_t)nr, ret);
|
|
} else {
|
|
reginsert(lop, ret);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Magic('?'):
|
|
case Magic('='):
|
|
// Emit x= as (x|)
|
|
reginsert(BRANCH, ret); // Either x
|
|
regtail(ret, regnode(BRANCH)); // or
|
|
next = regnode(NOTHING); // null.
|
|
regtail(ret, next);
|
|
regoptail(ret, next);
|
|
break;
|
|
|
|
case Magic('{'):
|
|
if (!read_limits(&minval, &maxval)) {
|
|
return NULL;
|
|
}
|
|
if (flags & SIMPLE) {
|
|
reginsert(BRACE_SIMPLE, ret);
|
|
reginsert_limits(BRACE_LIMITS, minval, maxval, ret);
|
|
} else {
|
|
if (num_complex_braces >= 10) {
|
|
EMSG2_RET_NULL(_("E60: Too many complex %s{...}s"),
|
|
reg_magic == MAGIC_ALL);
|
|
}
|
|
reginsert(BRACE_COMPLEX + num_complex_braces, ret);
|
|
regoptail(ret, regnode(BACK));
|
|
regoptail(ret, ret);
|
|
reginsert_limits(BRACE_LIMITS, minval, maxval, ret);
|
|
num_complex_braces++;
|
|
}
|
|
if (minval > 0 && maxval > 0) {
|
|
*flagp = (HASWIDTH | (flags & (HASNL | HASLOOKBH)));
|
|
}
|
|
break;
|
|
}
|
|
if (re_multi_type(peekchr()) != NOT_MULTI) {
|
|
// Can't have a multi follow a multi.
|
|
if (peekchr() == Magic('*')) {
|
|
EMSG2_RET_NULL(_("E61: Nested %s*"), reg_magic >= MAGIC_ON);
|
|
}
|
|
EMSG3_RET_NULL(_("E62: Nested %s%c"), reg_magic == MAGIC_ALL, no_Magic(peekchr()));
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Parse one alternative of an | or & operator.
|
|
// Implements the concatenation operator.
|
|
static uint8_t *regconcat(int *flagp)
|
|
{
|
|
uint8_t *first = NULL;
|
|
uint8_t *chain = NULL;
|
|
uint8_t *latest;
|
|
int flags;
|
|
int cont = true;
|
|
|
|
*flagp = WORST; // Tentatively.
|
|
|
|
while (cont) {
|
|
switch (peekchr()) {
|
|
case NUL:
|
|
case Magic('|'):
|
|
case Magic('&'):
|
|
case Magic(')'):
|
|
cont = false;
|
|
break;
|
|
case Magic('Z'):
|
|
regflags |= RF_ICOMBINE;
|
|
skipchr_keepstart();
|
|
break;
|
|
case Magic('c'):
|
|
regflags |= RF_ICASE;
|
|
skipchr_keepstart();
|
|
break;
|
|
case Magic('C'):
|
|
regflags |= RF_NOICASE;
|
|
skipchr_keepstart();
|
|
break;
|
|
case Magic('v'):
|
|
reg_magic = MAGIC_ALL;
|
|
skipchr_keepstart();
|
|
curchr = -1;
|
|
break;
|
|
case Magic('m'):
|
|
reg_magic = MAGIC_ON;
|
|
skipchr_keepstart();
|
|
curchr = -1;
|
|
break;
|
|
case Magic('M'):
|
|
reg_magic = MAGIC_OFF;
|
|
skipchr_keepstart();
|
|
curchr = -1;
|
|
break;
|
|
case Magic('V'):
|
|
reg_magic = MAGIC_NONE;
|
|
skipchr_keepstart();
|
|
curchr = -1;
|
|
break;
|
|
default:
|
|
latest = regpiece(&flags);
|
|
if (latest == NULL || reg_toolong) {
|
|
return NULL;
|
|
}
|
|
*flagp |= flags & (HASWIDTH | HASNL | HASLOOKBH);
|
|
if (chain == NULL) { // First piece.
|
|
*flagp |= flags & SPSTART;
|
|
} else {
|
|
regtail(chain, latest);
|
|
}
|
|
chain = latest;
|
|
if (first == NULL) {
|
|
first = latest;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if (first == NULL) { // Loop ran zero times.
|
|
first = regnode(NOTHING);
|
|
}
|
|
return first;
|
|
}
|
|
|
|
// Parse one alternative of an | operator.
|
|
// Implements the & operator.
|
|
static uint8_t *regbranch(int *flagp)
|
|
{
|
|
uint8_t *ret;
|
|
uint8_t *chain = NULL;
|
|
uint8_t *latest;
|
|
int flags;
|
|
|
|
*flagp = WORST | HASNL; // Tentatively.
|
|
|
|
ret = regnode(BRANCH);
|
|
while (true) {
|
|
latest = regconcat(&flags);
|
|
if (latest == NULL) {
|
|
return NULL;
|
|
}
|
|
// If one of the branches has width, the whole thing has. If one of
|
|
// the branches anchors at start-of-line, the whole thing does.
|
|
// If one of the branches uses look-behind, the whole thing does.
|
|
*flagp |= flags & (HASWIDTH | SPSTART | HASLOOKBH);
|
|
// If one of the branches doesn't match a line-break, the whole thing
|
|
// doesn't.
|
|
*flagp &= ~HASNL | (flags & HASNL);
|
|
if (chain != NULL) {
|
|
regtail(chain, latest);
|
|
}
|
|
if (peekchr() != Magic('&')) {
|
|
break;
|
|
}
|
|
skipchr();
|
|
regtail(latest, regnode(END)); // operand ends
|
|
if (reg_toolong) {
|
|
break;
|
|
}
|
|
reginsert(MATCH, latest);
|
|
chain = latest;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/// Parse regular expression, i.e. main body or parenthesized thing.
|
|
///
|
|
/// Caller must absorb opening parenthesis.
|
|
///
|
|
/// Combining parenthesis handling with the base level of regular expression
|
|
/// is a trifle forced, but the need to tie the tails of the branches to what
|
|
/// follows makes it hard to avoid.
|
|
///
|
|
/// @param paren REG_NOPAREN, REG_PAREN, REG_NPAREN or REG_ZPAREN
|
|
static uint8_t *reg(int paren, int *flagp)
|
|
{
|
|
uint8_t *ret;
|
|
uint8_t *br;
|
|
uint8_t *ender;
|
|
int parno = 0;
|
|
int flags;
|
|
|
|
*flagp = HASWIDTH; // Tentatively.
|
|
|
|
if (paren == REG_ZPAREN) {
|
|
// Make a ZOPEN node.
|
|
if (regnzpar >= NSUBEXP) {
|
|
EMSG_RET_NULL(_("E50: Too many \\z("));
|
|
}
|
|
parno = regnzpar;
|
|
regnzpar++;
|
|
ret = regnode(ZOPEN + parno);
|
|
} else if (paren == REG_PAREN) {
|
|
// Make a MOPEN node.
|
|
if (regnpar >= NSUBEXP) {
|
|
EMSG2_RET_NULL(_("E51: Too many %s("), reg_magic == MAGIC_ALL);
|
|
}
|
|
parno = regnpar;
|
|
regnpar++;
|
|
ret = regnode(MOPEN + parno);
|
|
} else if (paren == REG_NPAREN) {
|
|
// Make a NOPEN node.
|
|
ret = regnode(NOPEN);
|
|
} else {
|
|
ret = NULL;
|
|
}
|
|
|
|
// Pick up the branches, linking them together.
|
|
br = regbranch(&flags);
|
|
if (br == NULL) {
|
|
return NULL;
|
|
}
|
|
if (ret != NULL) {
|
|
regtail(ret, br); // [MZ]OPEN -> first.
|
|
} else {
|
|
ret = br;
|
|
}
|
|
// If one of the branches can be zero-width, the whole thing can.
|
|
// If one of the branches has * at start or matches a line-break, the
|
|
// whole thing can.
|
|
if (!(flags & HASWIDTH)) {
|
|
*flagp &= ~HASWIDTH;
|
|
}
|
|
*flagp |= flags & (SPSTART | HASNL | HASLOOKBH);
|
|
while (peekchr() == Magic('|')) {
|
|
skipchr();
|
|
br = regbranch(&flags);
|
|
if (br == NULL || reg_toolong) {
|
|
return NULL;
|
|
}
|
|
regtail(ret, br); // BRANCH -> BRANCH.
|
|
if (!(flags & HASWIDTH)) {
|
|
*flagp &= ~HASWIDTH;
|
|
}
|
|
*flagp |= flags & (SPSTART | HASNL | HASLOOKBH);
|
|
}
|
|
|
|
// Make a closing node, and hook it on the end.
|
|
ender = regnode(paren == REG_ZPAREN ? ZCLOSE + parno
|
|
: paren == REG_PAREN ? MCLOSE + parno
|
|
: paren == REG_NPAREN ? NCLOSE : END);
|
|
regtail(ret, ender);
|
|
|
|
// Hook the tails of the branches to the closing node.
|
|
for (br = ret; br != NULL; br = regnext(br)) {
|
|
regoptail(br, ender);
|
|
}
|
|
|
|
// Check for proper termination.
|
|
if (paren != REG_NOPAREN && getchr() != Magic(')')) {
|
|
if (paren == REG_ZPAREN) {
|
|
EMSG_RET_NULL(_("E52: Unmatched \\z("));
|
|
} else if (paren == REG_NPAREN) {
|
|
EMSG2_RET_NULL(_(e_unmatchedpp), reg_magic == MAGIC_ALL);
|
|
} else {
|
|
EMSG2_RET_NULL(_(e_unmatchedp), reg_magic == MAGIC_ALL);
|
|
}
|
|
} else if (paren == REG_NOPAREN && peekchr() != NUL) {
|
|
if (curchr == Magic(')')) {
|
|
EMSG2_RET_NULL(_(e_unmatchedpar), reg_magic == MAGIC_ALL);
|
|
} else {
|
|
EMSG_RET_NULL(_(e_trailing)); // "Can't happen".
|
|
}
|
|
// NOTREACHED
|
|
}
|
|
// Here we set the flag allowing back references to this set of
|
|
// parentheses.
|
|
if (paren == REG_PAREN) {
|
|
had_endbrace[parno] = true; // have seen the close paren
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// bt_regcomp() - compile a regular expression into internal code for the
|
|
// traditional back track matcher.
|
|
// Returns the program in allocated space. Returns NULL for an error.
|
|
//
|
|
// We can't allocate space until we know how big the compiled form will be,
|
|
// but we can't compile it (and thus know how big it is) until we've got a
|
|
// place to put the code. So we cheat: we compile it twice, once with code
|
|
// generation turned off and size counting turned on, and once "for real".
|
|
// This also means that we don't allocate space until we are sure that the
|
|
// thing really will compile successfully, and we never have to move the
|
|
// code and thus invalidate pointers into it. (Note that it has to be in
|
|
// one piece because free() must be able to free it all.)
|
|
//
|
|
// Whether upper/lower case is to be ignored is decided when executing the
|
|
// program, it does not matter here.
|
|
//
|
|
// Beware that the optimization-preparation code in here knows about some
|
|
// of the structure of the compiled regexp.
|
|
// "re_flags": RE_MAGIC and/or RE_STRING.
|
|
static regprog_T *bt_regcomp(uint8_t *expr, int re_flags)
|
|
{
|
|
uint8_t *scan;
|
|
uint8_t *longest;
|
|
int len;
|
|
int flags;
|
|
|
|
if (expr == NULL) {
|
|
IEMSG_RET_NULL(_(e_null));
|
|
}
|
|
|
|
init_class_tab();
|
|
|
|
// First pass: determine size, legality.
|
|
regcomp_start(expr, re_flags);
|
|
regcode = JUST_CALC_SIZE;
|
|
regc(REGMAGIC);
|
|
if (reg(REG_NOPAREN, &flags) == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
// Allocate space.
|
|
bt_regprog_T *r = xmalloc(offsetof(bt_regprog_T, program) + (size_t)regsize);
|
|
r->re_in_use = false;
|
|
|
|
// Second pass: emit code.
|
|
regcomp_start(expr, re_flags);
|
|
regcode = r->program;
|
|
regc(REGMAGIC);
|
|
if (reg(REG_NOPAREN, &flags) == NULL || reg_toolong) {
|
|
xfree(r);
|
|
if (reg_toolong) {
|
|
EMSG_RET_NULL(_("E339: Pattern too long"));
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
// Dig out information for optimizations.
|
|
r->regstart = NUL; // Worst-case defaults.
|
|
r->reganch = 0;
|
|
r->regmust = NULL;
|
|
r->regmlen = 0;
|
|
r->regflags = regflags;
|
|
if (flags & HASNL) {
|
|
r->regflags |= RF_HASNL;
|
|
}
|
|
if (flags & HASLOOKBH) {
|
|
r->regflags |= RF_LOOKBH;
|
|
}
|
|
// Remember whether this pattern has any \z specials in it.
|
|
r->reghasz = (uint8_t)re_has_z;
|
|
scan = r->program + 1; // First BRANCH.
|
|
if (OP(regnext(scan)) == END) { // Only one top-level choice.
|
|
scan = OPERAND(scan);
|
|
|
|
// Starting-point info.
|
|
if (OP(scan) == BOL || OP(scan) == RE_BOF) {
|
|
r->reganch++;
|
|
scan = regnext(scan);
|
|
}
|
|
|
|
if (OP(scan) == EXACTLY) {
|
|
r->regstart = utf_ptr2char((char *)OPERAND(scan));
|
|
} else if (OP(scan) == BOW
|
|
|| OP(scan) == EOW
|
|
|| OP(scan) == NOTHING
|
|
|| OP(scan) == MOPEN + 0 || OP(scan) == NOPEN
|
|
|| OP(scan) == MCLOSE + 0 || OP(scan) == NCLOSE) {
|
|
uint8_t *regnext_scan = regnext(scan);
|
|
if (OP(regnext_scan) == EXACTLY) {
|
|
r->regstart = utf_ptr2char((char *)OPERAND(regnext_scan));
|
|
}
|
|
}
|
|
|
|
// If there's something expensive in the r.e., find the longest
|
|
// literal string that must appear and make it the regmust. Resolve
|
|
// ties in favor of later strings, since the regstart check works
|
|
// with the beginning of the r.e. and avoiding duplication
|
|
// strengthens checking. Not a strong reason, but sufficient in the
|
|
// absence of others.
|
|
|
|
// When the r.e. starts with BOW, it is faster to look for a regmust
|
|
// first. Used a lot for "#" and "*" commands. (Added by mool).
|
|
if ((flags & SPSTART || OP(scan) == BOW || OP(scan) == EOW)
|
|
&& !(flags & HASNL)) {
|
|
longest = NULL;
|
|
len = 0;
|
|
for (; scan != NULL; scan = regnext(scan)) {
|
|
if (OP(scan) == EXACTLY && strlen((char *)OPERAND(scan)) >= (size_t)len) {
|
|
longest = OPERAND(scan);
|
|
len = (int)strlen((char *)OPERAND(scan));
|
|
}
|
|
}
|
|
r->regmust = longest;
|
|
r->regmlen = len;
|
|
}
|
|
}
|
|
#ifdef BT_REGEXP_DUMP
|
|
regdump(expr, r);
|
|
#endif
|
|
r->engine = &bt_regengine;
|
|
return (regprog_T *)r;
|
|
}
|
|
|
|
// Check if during the previous call to vim_regcomp the EOL item "$" has been
|
|
// found. This is messy, but it works fine.
|
|
int vim_regcomp_had_eol(void)
|
|
{
|
|
return had_eol;
|
|
}
|
|
|
|
// Get a number after a backslash that is inside [].
|
|
// When nothing is recognized return a backslash.
|
|
static int coll_get_char(void)
|
|
{
|
|
int64_t nr = -1;
|
|
|
|
switch (*regparse++) {
|
|
case 'd':
|
|
nr = getdecchrs(); break;
|
|
case 'o':
|
|
nr = getoctchrs(); break;
|
|
case 'x':
|
|
nr = gethexchrs(2); break;
|
|
case 'u':
|
|
nr = gethexchrs(4); break;
|
|
case 'U':
|
|
nr = gethexchrs(8); break;
|
|
}
|
|
if (nr < 0 || nr > INT_MAX) {
|
|
// If getting the number fails be backwards compatible: the character
|
|
// is a backslash.
|
|
regparse--;
|
|
nr = '\\';
|
|
}
|
|
return (int)nr;
|
|
}
|
|
|
|
// Free a compiled regexp program, returned by bt_regcomp().
|
|
static void bt_regfree(regprog_T *prog)
|
|
{
|
|
xfree(prog);
|
|
}
|
|
|
|
#define ADVANCE_REGINPUT() MB_PTR_ADV(rex.input)
|
|
|
|
// The arguments from BRACE_LIMITS are stored here. They are actually local
|
|
// to regmatch(), but they are here to reduce the amount of stack space used
|
|
// (it can be called recursively many times).
|
|
static int64_t bl_minval;
|
|
static int64_t bl_maxval;
|
|
|
|
// Save the input line and position in a regsave_T.
|
|
static void reg_save(regsave_T *save, garray_T *gap)
|
|
FUNC_ATTR_NONNULL_ALL
|
|
{
|
|
if (REG_MULTI) {
|
|
save->rs_u.pos.col = (colnr_T)(rex.input - rex.line);
|
|
save->rs_u.pos.lnum = rex.lnum;
|
|
} else {
|
|
save->rs_u.ptr = rex.input;
|
|
}
|
|
save->rs_len = gap->ga_len;
|
|
}
|
|
|
|
// Restore the input line and position from a regsave_T.
|
|
static void reg_restore(regsave_T *save, garray_T *gap)
|
|
FUNC_ATTR_NONNULL_ALL
|
|
{
|
|
if (REG_MULTI) {
|
|
if (rex.lnum != save->rs_u.pos.lnum) {
|
|
// only call reg_getline() when the line number changed to save
|
|
// a bit of time
|
|
rex.lnum = save->rs_u.pos.lnum;
|
|
rex.line = (uint8_t *)reg_getline(rex.lnum);
|
|
}
|
|
rex.input = rex.line + save->rs_u.pos.col;
|
|
} else {
|
|
rex.input = save->rs_u.ptr;
|
|
}
|
|
gap->ga_len = save->rs_len;
|
|
}
|
|
|
|
// Return true if current position is equal to saved position.
|
|
static bool reg_save_equal(const regsave_T *save)
|
|
FUNC_ATTR_NONNULL_ALL
|
|
{
|
|
if (REG_MULTI) {
|
|
return rex.lnum == save->rs_u.pos.lnum
|
|
&& rex.input == rex.line + save->rs_u.pos.col;
|
|
}
|
|
return rex.input == save->rs_u.ptr;
|
|
}
|
|
|
|
// Save the sub-expressions before attempting a match.
|
|
#define save_se(savep, posp, pp) \
|
|
REG_MULTI ? save_se_multi((savep), (posp)) : save_se_one((savep), (pp))
|
|
|
|
// After a failed match restore the sub-expressions.
|
|
#define restore_se(savep, posp, pp) { \
|
|
if (REG_MULTI) \
|
|
*(posp) = (savep)->se_u.pos; \
|
|
else \
|
|
*(pp) = (savep)->se_u.ptr; }
|
|
|
|
// Tentatively set the sub-expression start to the current position (after
|
|
// calling regmatch() they will have changed). Need to save the existing
|
|
// values for when there is no match.
|
|
// Use se_save() to use pointer (save_se_multi()) or position (save_se_one()),
|
|
// depending on REG_MULTI.
|
|
static void save_se_multi(save_se_T *savep, lpos_T *posp)
|
|
{
|
|
savep->se_u.pos = *posp;
|
|
posp->lnum = rex.lnum;
|
|
posp->col = (colnr_T)(rex.input - rex.line);
|
|
}
|
|
|
|
static void save_se_one(save_se_T *savep, uint8_t **pp)
|
|
{
|
|
savep->se_u.ptr = *pp;
|
|
*pp = rex.input;
|
|
}
|
|
|
|
/// regrepeat - repeatedly match something simple, return how many.
|
|
/// Advances rex.input (and rex.lnum) to just after the matched chars.
|
|
///
|
|
/// @param maxcount maximum number of matches allowed
|
|
static int regrepeat(uint8_t *p, int64_t maxcount)
|
|
{
|
|
int64_t count = 0;
|
|
uint8_t *opnd;
|
|
int mask;
|
|
int testval = 0;
|
|
|
|
uint8_t *scan = rex.input; // Make local copy of rex.input for speed.
|
|
opnd = OPERAND(p);
|
|
switch (OP(p)) {
|
|
case ANY:
|
|
case ANY + ADD_NL:
|
|
while (count < maxcount) {
|
|
// Matching anything means we continue until end-of-line (or
|
|
// end-of-file for ANY + ADD_NL), only limited by maxcount.
|
|
while (*scan != NUL && count < maxcount) {
|
|
count++;
|
|
MB_PTR_ADV(scan);
|
|
}
|
|
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|
|
|| rex.reg_line_lbr || count == maxcount) {
|
|
break;
|
|
}
|
|
count++; // count the line-break
|
|
reg_nextline();
|
|
scan = rex.input;
|
|
if (got_int) {
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case IDENT:
|
|
case IDENT + ADD_NL:
|
|
testval = 1;
|
|
FALLTHROUGH;
|
|
case SIDENT:
|
|
case SIDENT + ADD_NL:
|
|
while (count < maxcount) {
|
|
if (vim_isIDc(utf_ptr2char((char *)scan)) && (testval || !ascii_isdigit(*scan))) {
|
|
MB_PTR_ADV(scan);
|
|
} else if (*scan == NUL) {
|
|
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|
|
|| rex.reg_line_lbr) {
|
|
break;
|
|
}
|
|
reg_nextline();
|
|
scan = rex.input;
|
|
if (got_int) {
|
|
break;
|
|
}
|
|
} else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) {
|
|
scan++;
|
|
} else {
|
|
break;
|
|
}
|
|
count++;
|
|
}
|
|
break;
|
|
|
|
case KWORD:
|
|
case KWORD + ADD_NL:
|
|
testval = 1;
|
|
FALLTHROUGH;
|
|
case SKWORD:
|
|
case SKWORD + ADD_NL:
|
|
while (count < maxcount) {
|
|
if (vim_iswordp_buf((char *)scan, rex.reg_buf)
|
|
&& (testval || !ascii_isdigit(*scan))) {
|
|
MB_PTR_ADV(scan);
|
|
} else if (*scan == NUL) {
|
|
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|
|
|| rex.reg_line_lbr) {
|
|
break;
|
|
}
|
|
reg_nextline();
|
|
scan = rex.input;
|
|
if (got_int) {
|
|
break;
|
|
}
|
|
} else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) {
|
|
scan++;
|
|
} else {
|
|
break;
|
|
}
|
|
count++;
|
|
}
|
|
break;
|
|
|
|
case FNAME:
|
|
case FNAME + ADD_NL:
|
|
testval = 1;
|
|
FALLTHROUGH;
|
|
case SFNAME:
|
|
case SFNAME + ADD_NL:
|
|
while (count < maxcount) {
|
|
if (vim_isfilec(utf_ptr2char((char *)scan)) && (testval || !ascii_isdigit(*scan))) {
|
|
MB_PTR_ADV(scan);
|
|
} else if (*scan == NUL) {
|
|
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|
|
|| rex.reg_line_lbr) {
|
|
break;
|
|
}
|
|
reg_nextline();
|
|
scan = rex.input;
|
|
if (got_int) {
|
|
break;
|
|
}
|
|
} else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) {
|
|
scan++;
|
|
} else {
|
|
break;
|
|
}
|
|
count++;
|
|
}
|
|
break;
|
|
|
|
case PRINT:
|
|
case PRINT + ADD_NL:
|
|
testval = 1;
|
|
FALLTHROUGH;
|
|
case SPRINT:
|
|
case SPRINT + ADD_NL:
|
|
while (count < maxcount) {
|
|
if (*scan == NUL) {
|
|
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|
|
|| rex.reg_line_lbr) {
|
|
break;
|
|
}
|
|
reg_nextline();
|
|
scan = rex.input;
|
|
if (got_int) {
|
|
break;
|
|
}
|
|
} else if (vim_isprintc(utf_ptr2char((char *)scan)) == 1
|
|
&& (testval || !ascii_isdigit(*scan))) {
|
|
MB_PTR_ADV(scan);
|
|
} else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) {
|
|
scan++;
|
|
} else {
|
|
break;
|
|
}
|
|
count++;
|
|
}
|
|
break;
|
|
|
|
case WHITE:
|
|
case WHITE + ADD_NL:
|
|
testval = mask = RI_WHITE;
|
|
do_class:
|
|
while (count < maxcount) {
|
|
int l;
|
|
if (*scan == NUL) {
|
|
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|
|
|| rex.reg_line_lbr) {
|
|
break;
|
|
}
|
|
reg_nextline();
|
|
scan = rex.input;
|
|
if (got_int) {
|
|
break;
|
|
}
|
|
} else if ((l = utfc_ptr2len((char *)scan)) > 1) {
|
|
if (testval != 0) {
|
|
break;
|
|
}
|
|
scan += l;
|
|
} else if ((class_tab[*scan] & mask) == testval) {
|
|
scan++;
|
|
} else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) {
|
|
scan++;
|
|
} else {
|
|
break;
|
|
}
|
|
count++;
|
|
}
|
|
break;
|
|
|
|
case NWHITE:
|
|
case NWHITE + ADD_NL:
|
|
mask = RI_WHITE;
|
|
goto do_class;
|
|
case DIGIT:
|
|
case DIGIT + ADD_NL:
|
|
testval = mask = RI_DIGIT;
|
|
goto do_class;
|
|
case NDIGIT:
|
|
case NDIGIT + ADD_NL:
|
|
mask = RI_DIGIT;
|
|
goto do_class;
|
|
case HEX:
|
|
case HEX + ADD_NL:
|
|
testval = mask = RI_HEX;
|
|
goto do_class;
|
|
case NHEX:
|
|
case NHEX + ADD_NL:
|
|
mask = RI_HEX;
|
|
goto do_class;
|
|
case OCTAL:
|
|
case OCTAL + ADD_NL:
|
|
testval = mask = RI_OCTAL;
|
|
goto do_class;
|
|
case NOCTAL:
|
|
case NOCTAL + ADD_NL:
|
|
mask = RI_OCTAL;
|
|
goto do_class;
|
|
case WORD:
|
|
case WORD + ADD_NL:
|
|
testval = mask = RI_WORD;
|
|
goto do_class;
|
|
case NWORD:
|
|
case NWORD + ADD_NL:
|
|
mask = RI_WORD;
|
|
goto do_class;
|
|
case HEAD:
|
|
case HEAD + ADD_NL:
|
|
testval = mask = RI_HEAD;
|
|
goto do_class;
|
|
case NHEAD:
|
|
case NHEAD + ADD_NL:
|
|
mask = RI_HEAD;
|
|
goto do_class;
|
|
case ALPHA:
|
|
case ALPHA + ADD_NL:
|
|
testval = mask = RI_ALPHA;
|
|
goto do_class;
|
|
case NALPHA:
|
|
case NALPHA + ADD_NL:
|
|
mask = RI_ALPHA;
|
|
goto do_class;
|
|
case LOWER:
|
|
case LOWER + ADD_NL:
|
|
testval = mask = RI_LOWER;
|
|
goto do_class;
|
|
case NLOWER:
|
|
case NLOWER + ADD_NL:
|
|
mask = RI_LOWER;
|
|
goto do_class;
|
|
case UPPER:
|
|
case UPPER + ADD_NL:
|
|
testval = mask = RI_UPPER;
|
|
goto do_class;
|
|
case NUPPER:
|
|
case NUPPER + ADD_NL:
|
|
mask = RI_UPPER;
|
|
goto do_class;
|
|
|
|
case EXACTLY: {
|
|
int cu, cl;
|
|
|
|
// This doesn't do a multi-byte character, because a MULTIBYTECODE
|
|
// would have been used for it. It does handle single-byte
|
|
// characters, such as latin1.
|
|
if (rex.reg_ic) {
|
|
cu = mb_toupper(*opnd);
|
|
cl = mb_tolower(*opnd);
|
|
while (count < maxcount && (*scan == cu || *scan == cl)) {
|
|
count++;
|
|
scan++;
|
|
}
|
|
} else {
|
|
cu = *opnd;
|
|
while (count < maxcount && *scan == cu) {
|
|
count++;
|
|
scan++;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case MULTIBYTECODE: {
|
|
int i, len, cf = 0;
|
|
|
|
// Safety check (just in case 'encoding' was changed since
|
|
// compiling the program).
|
|
if ((len = utfc_ptr2len((char *)opnd)) > 1) {
|
|
if (rex.reg_ic) {
|
|
cf = utf_fold(utf_ptr2char((char *)opnd));
|
|
}
|
|
while (count < maxcount && utfc_ptr2len((char *)scan) >= len) {
|
|
for (i = 0; i < len; i++) {
|
|
if (opnd[i] != scan[i]) {
|
|
break;
|
|
}
|
|
}
|
|
if (i < len && (!rex.reg_ic
|
|
|| utf_fold(utf_ptr2char((char *)scan)) != cf)) {
|
|
break;
|
|
}
|
|
scan += len;
|
|
count++;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ANYOF:
|
|
case ANYOF + ADD_NL:
|
|
testval = 1;
|
|
FALLTHROUGH;
|
|
|
|
case ANYBUT:
|
|
case ANYBUT + ADD_NL:
|
|
while (count < maxcount) {
|
|
int len;
|
|
if (*scan == NUL) {
|
|
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|
|
|| rex.reg_line_lbr) {
|
|
break;
|
|
}
|
|
reg_nextline();
|
|
scan = rex.input;
|
|
if (got_int) {
|
|
break;
|
|
}
|
|
} else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) {
|
|
scan++;
|
|
} else if ((len = utfc_ptr2len((char *)scan)) > 1) {
|
|
if ((cstrchr((char *)opnd, utf_ptr2char((char *)scan)) == NULL) == testval) {
|
|
break;
|
|
}
|
|
scan += len;
|
|
} else {
|
|
if ((cstrchr((char *)opnd, *scan) == NULL) == testval) {
|
|
break;
|
|
}
|
|
scan++;
|
|
}
|
|
count++;
|
|
}
|
|
break;
|
|
|
|
case NEWL:
|
|
while (count < maxcount
|
|
&& ((*scan == NUL && rex.lnum <= rex.reg_maxline && !rex.reg_line_lbr
|
|
&& REG_MULTI) || (*scan == '\n' && rex.reg_line_lbr))) {
|
|
count++;
|
|
if (rex.reg_line_lbr) {
|
|
ADVANCE_REGINPUT();
|
|
} else {
|
|
reg_nextline();
|
|
}
|
|
scan = rex.input;
|
|
if (got_int) {
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default: // Oh dear. Called inappropriately.
|
|
iemsg(_(e_re_corr));
|
|
#ifdef REGEXP_DEBUG
|
|
printf("Called regrepeat with op code %d\n", OP(p));
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
rex.input = scan;
|
|
|
|
return (int)count;
|
|
}
|
|
|
|
// Push an item onto the regstack.
|
|
// Returns pointer to new item. Returns NULL when out of memory.
|
|
static regitem_T *regstack_push(regstate_T state, uint8_t *scan)
|
|
{
|
|
regitem_T *rp;
|
|
|
|
if ((int64_t)((unsigned)regstack.ga_len >> 10) >= p_mmp) {
|
|
emsg(_(e_pattern_uses_more_memory_than_maxmempattern));
|
|
return NULL;
|
|
}
|
|
ga_grow(®stack, sizeof(regitem_T));
|
|
|
|
rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len);
|
|
rp->rs_state = state;
|
|
rp->rs_scan = scan;
|
|
|
|
regstack.ga_len += (int)sizeof(regitem_T);
|
|
return rp;
|
|
}
|
|
|
|
// Pop an item from the regstack.
|
|
static void regstack_pop(uint8_t **scan)
|
|
{
|
|
regitem_T *rp;
|
|
|
|
rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len) - 1;
|
|
*scan = rp->rs_scan;
|
|
|
|
regstack.ga_len -= (int)sizeof(regitem_T);
|
|
}
|
|
|
|
// Save the current subexpr to "bp", so that they can be restored
|
|
// later by restore_subexpr().
|
|
static void save_subexpr(regbehind_T *bp)
|
|
FUNC_ATTR_NONNULL_ALL
|
|
{
|
|
// When "rex.need_clear_subexpr" is set we don't need to save the values, only
|
|
// remember that this flag needs to be set again when restoring.
|
|
bp->save_need_clear_subexpr = rex.need_clear_subexpr;
|
|
if (rex.need_clear_subexpr) {
|
|
return;
|
|
}
|
|
|
|
for (int i = 0; i < NSUBEXP; i++) {
|
|
if (REG_MULTI) {
|
|
bp->save_start[i].se_u.pos = rex.reg_startpos[i];
|
|
bp->save_end[i].se_u.pos = rex.reg_endpos[i];
|
|
} else {
|
|
bp->save_start[i].se_u.ptr = rex.reg_startp[i];
|
|
bp->save_end[i].se_u.ptr = rex.reg_endp[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
// Restore the subexpr from "bp".
|
|
static void restore_subexpr(regbehind_T *bp)
|
|
FUNC_ATTR_NONNULL_ALL
|
|
{
|
|
// Only need to restore saved values when they are not to be cleared.
|
|
rex.need_clear_subexpr = bp->save_need_clear_subexpr;
|
|
if (rex.need_clear_subexpr) {
|
|
return;
|
|
}
|
|
|
|
for (int i = 0; i < NSUBEXP; i++) {
|
|
if (REG_MULTI) {
|
|
rex.reg_startpos[i] = bp->save_start[i].se_u.pos;
|
|
rex.reg_endpos[i] = bp->save_end[i].se_u.pos;
|
|
} else {
|
|
rex.reg_startp[i] = bp->save_start[i].se_u.ptr;
|
|
rex.reg_endp[i] = bp->save_end[i].se_u.ptr;
|
|
}
|
|
}
|
|
}
|
|
/// Main matching routine
|
|
///
|
|
/// Conceptually the strategy is simple: Check to see whether the current node
|
|
/// matches, push an item onto the regstack and loop to see whether the rest
|
|
/// matches, and then act accordingly. In practice we make some effort to
|
|
/// avoid using the regstack, in particular by going through "ordinary" nodes
|
|
/// (that don't need to know whether the rest of the match failed) by a nested
|
|
/// loop.
|
|
///
|
|
/// @param scan Current node.
|
|
/// @param tm timeout limit or NULL
|
|
/// @param timed_out flag set on timeout or NULL
|
|
///
|
|
/// @return - true when there is a match. Leaves rex.input and rex.lnum
|
|
/// just after the last matched character.
|
|
/// - false when there is no match. Leaves rex.input and rex.lnum in an
|
|
/// undefined state!
|
|
static bool regmatch(uint8_t *scan, const proftime_T *tm, int *timed_out)
|
|
{
|
|
uint8_t *next; // Next node.
|
|
int op;
|
|
int c;
|
|
regitem_T *rp;
|
|
int no;
|
|
int status; // one of the RA_ values:
|
|
int tm_count = 0;
|
|
|
|
// Make "regstack" and "backpos" empty. They are allocated and freed in
|
|
// bt_regexec_both() to reduce malloc()/free() calls.
|
|
regstack.ga_len = 0;
|
|
backpos.ga_len = 0;
|
|
|
|
// Repeat until "regstack" is empty.
|
|
while (true) {
|
|
// Some patterns may take a long time to match, e.g., "\([a-z]\+\)\+Q".
|
|
// Allow interrupting them with CTRL-C.
|
|
reg_breakcheck();
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
if (scan != NULL && regnarrate) {
|
|
fprintf(stderr, "%s", (char *)regprop(scan));
|
|
fprintf(stderr, "%s", "(\n");
|
|
}
|
|
#endif
|
|
|
|
// Repeat for items that can be matched sequentially, without using the
|
|
// regstack.
|
|
while (true) {
|
|
if (got_int || scan == NULL) {
|
|
status = RA_FAIL;
|
|
break;
|
|
}
|
|
// Check for timeout once in a 100 times to avoid overhead.
|
|
if (tm != NULL && ++tm_count == 100) {
|
|
tm_count = 0;
|
|
if (profile_passed_limit(*tm)) {
|
|
if (timed_out != NULL) {
|
|
*timed_out = true;
|
|
}
|
|
status = RA_FAIL;
|
|
break;
|
|
}
|
|
}
|
|
status = RA_CONT;
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
if (regnarrate) {
|
|
fprintf(stderr, "%s", (char *)regprop(scan));
|
|
fprintf(stderr, "%s", "...\n");
|
|
if (re_extmatch_in != NULL) {
|
|
int i;
|
|
|
|
fprintf(stderr, _("External submatches:\n"));
|
|
for (i = 0; i < NSUBEXP; i++) {
|
|
fprintf(stderr, "%s", " \"");
|
|
if (re_extmatch_in->matches[i] != NULL) {
|
|
fprintf(stderr, "%s", (char *)re_extmatch_in->matches[i]);
|
|
}
|
|
fprintf(stderr, "%s", "\"\n");
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
next = regnext(scan);
|
|
|
|
op = OP(scan);
|
|
// Check for character class with NL added.
|
|
if (!rex.reg_line_lbr && WITH_NL(op) && REG_MULTI
|
|
&& *rex.input == NUL && rex.lnum <= rex.reg_maxline) {
|
|
reg_nextline();
|
|
} else if (rex.reg_line_lbr && WITH_NL(op) && *rex.input == '\n') {
|
|
ADVANCE_REGINPUT();
|
|
} else {
|
|
if (WITH_NL(op)) {
|
|
op -= ADD_NL;
|
|
}
|
|
c = utf_ptr2char((char *)rex.input);
|
|
switch (op) {
|
|
case BOL:
|
|
if (rex.input != rex.line) {
|
|
status = RA_NOMATCH;
|
|
}
|
|
break;
|
|
|
|
case EOL:
|
|
if (c != NUL) {
|
|
status = RA_NOMATCH;
|
|
}
|
|
break;
|
|
|
|
case RE_BOF:
|
|
// We're not at the beginning of the file when below the first
|
|
// line where we started, not at the start of the line or we
|
|
// didn't start at the first line of the buffer.
|
|
if (rex.lnum != 0 || rex.input != rex.line
|
|
|| (REG_MULTI && rex.reg_firstlnum > 1)) {
|
|
status = RA_NOMATCH;
|
|
}
|
|
break;
|
|
|
|
case RE_EOF:
|
|
if (rex.lnum != rex.reg_maxline || c != NUL) {
|
|
status = RA_NOMATCH;
|
|
}
|
|
break;
|
|
|
|
case CURSOR:
|
|
// Check if the buffer is in a window and compare the
|
|
// rex.reg_win->w_cursor position to the match position.
|
|
if (rex.reg_win == NULL
|
|
|| (rex.lnum + rex.reg_firstlnum != rex.reg_win->w_cursor.lnum)
|
|
|| ((colnr_T)(rex.input - rex.line) !=
|
|
rex.reg_win->w_cursor.col)) {
|
|
status = RA_NOMATCH;
|
|
}
|
|
break;
|
|
|
|
case RE_MARK:
|
|
// Compare the mark position to the match position.
|
|
{
|
|
int mark = OPERAND(scan)[0];
|
|
int cmp = OPERAND(scan)[1];
|
|
pos_T *pos;
|
|
size_t col = REG_MULTI ? (size_t)(rex.input - rex.line) : 0;
|
|
fmark_T *fm = mark_get(rex.reg_buf, curwin, NULL, kMarkBufLocal, mark);
|
|
|
|
// Line may have been freed, get it again.
|
|
if (REG_MULTI) {
|
|
rex.line = (uint8_t *)reg_getline(rex.lnum);
|
|
rex.input = rex.line + col;
|
|
}
|
|
|
|
if (fm == NULL // mark doesn't exist
|
|
|| fm->mark.lnum <= 0) { // mark isn't set in reg_buf
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
pos = &fm->mark;
|
|
const colnr_T pos_col = pos->lnum == rex.lnum + rex.reg_firstlnum
|
|
&& pos->col == MAXCOL
|
|
? (colnr_T)strlen(reg_getline(pos->lnum - rex.reg_firstlnum))
|
|
: pos->col;
|
|
|
|
if (pos->lnum == rex.lnum + rex.reg_firstlnum
|
|
? (pos_col == (colnr_T)(rex.input - rex.line)
|
|
? (cmp == '<' || cmp == '>')
|
|
: (pos_col < (colnr_T)(rex.input - rex.line)
|
|
? cmp != '>'
|
|
: cmp != '<'))
|
|
: (pos->lnum < rex.lnum + rex.reg_firstlnum
|
|
? cmp != '>'
|
|
: cmp != '<')) {
|
|
status = RA_NOMATCH;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case RE_VISUAL:
|
|
if (!reg_match_visual()) {
|
|
status = RA_NOMATCH;
|
|
}
|
|
break;
|
|
|
|
case RE_LNUM:
|
|
assert(rex.lnum + rex.reg_firstlnum >= 0
|
|
&& (uintmax_t)(rex.lnum + rex.reg_firstlnum) <= UINT32_MAX);
|
|
if (!REG_MULTI
|
|
|| !re_num_cmp((uint32_t)(rex.lnum + rex.reg_firstlnum), scan)) {
|
|
status = RA_NOMATCH;
|
|
}
|
|
break;
|
|
|
|
case RE_COL:
|
|
assert(rex.input - rex.line + 1 >= 0
|
|
&& (uintmax_t)(rex.input - rex.line + 1) <= UINT32_MAX);
|
|
if (!re_num_cmp((uint32_t)(rex.input - rex.line + 1), scan)) {
|
|
status = RA_NOMATCH;
|
|
}
|
|
break;
|
|
|
|
case RE_VCOL:
|
|
if (!re_num_cmp((unsigned)win_linetabsize(rex.reg_win == NULL ? curwin : rex.reg_win,
|
|
rex.reg_firstlnum + rex.lnum,
|
|
(char *)rex.line,
|
|
(colnr_T)(rex.input - rex.line)) + 1,
|
|
scan)) {
|
|
status = RA_NOMATCH;
|
|
}
|
|
break;
|
|
|
|
case BOW: // \<word; rex.input points to w
|
|
if (c == NUL) { // Can't match at end of line
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
// Get class of current and previous char (if it exists).
|
|
const int this_class =
|
|
mb_get_class_tab((char *)rex.input, rex.reg_buf->b_chartab);
|
|
if (this_class <= 1) {
|
|
status = RA_NOMATCH; // Not on a word at all.
|
|
} else if (reg_prev_class() == this_class) {
|
|
status = RA_NOMATCH; // Previous char is in same word.
|
|
}
|
|
}
|
|
break;
|
|
|
|
case EOW: // word\>; rex.input points after d
|
|
if (rex.input == rex.line) { // Can't match at start of line
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
int this_class, prev_class;
|
|
|
|
// Get class of current and previous char (if it exists).
|
|
this_class = mb_get_class_tab((char *)rex.input, rex.reg_buf->b_chartab);
|
|
prev_class = reg_prev_class();
|
|
if (this_class == prev_class
|
|
|| prev_class == 0 || prev_class == 1) {
|
|
status = RA_NOMATCH;
|
|
}
|
|
}
|
|
break; // Matched with EOW
|
|
|
|
case ANY:
|
|
// ANY does not match new lines.
|
|
if (c == NUL) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case IDENT:
|
|
if (!vim_isIDc(c)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case SIDENT:
|
|
if (ascii_isdigit(*rex.input) || !vim_isIDc(c)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case KWORD:
|
|
if (!vim_iswordp_buf((char *)rex.input, rex.reg_buf)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case SKWORD:
|
|
if (ascii_isdigit(*rex.input)
|
|
|| !vim_iswordp_buf((char *)rex.input, rex.reg_buf)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case FNAME:
|
|
if (!vim_isfilec(c)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case SFNAME:
|
|
if (ascii_isdigit(*rex.input) || !vim_isfilec(c)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case PRINT:
|
|
if (!vim_isprintc(utf_ptr2char((char *)rex.input))) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case SPRINT:
|
|
if (ascii_isdigit(*rex.input) || !vim_isprintc(utf_ptr2char((char *)rex.input))) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case WHITE:
|
|
if (!ascii_iswhite(c)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case NWHITE:
|
|
if (c == NUL || ascii_iswhite(c)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case DIGIT:
|
|
if (!ri_digit(c)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case NDIGIT:
|
|
if (c == NUL || ri_digit(c)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case HEX:
|
|
if (!ri_hex(c)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case NHEX:
|
|
if (c == NUL || ri_hex(c)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case OCTAL:
|
|
if (!ri_octal(c)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case NOCTAL:
|
|
if (c == NUL || ri_octal(c)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case WORD:
|
|
if (!ri_word(c)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case NWORD:
|
|
if (c == NUL || ri_word(c)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case HEAD:
|
|
if (!ri_head(c)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case NHEAD:
|
|
if (c == NUL || ri_head(c)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case ALPHA:
|
|
if (!ri_alpha(c)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case NALPHA:
|
|
if (c == NUL || ri_alpha(c)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case LOWER:
|
|
if (!ri_lower(c)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case NLOWER:
|
|
if (c == NUL || ri_lower(c)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case UPPER:
|
|
if (!ri_upper(c)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case NUPPER:
|
|
if (c == NUL || ri_upper(c)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
ADVANCE_REGINPUT();
|
|
}
|
|
break;
|
|
|
|
case EXACTLY: {
|
|
int len;
|
|
uint8_t *opnd;
|
|
|
|
opnd = OPERAND(scan);
|
|
// Inline the first byte, for speed.
|
|
if (*opnd != *rex.input
|
|
&& (!rex.reg_ic)) {
|
|
status = RA_NOMATCH;
|
|
} else if (*opnd == NUL) {
|
|
// match empty string always works; happens when "~" is
|
|
// empty.
|
|
} else {
|
|
if (opnd[1] == NUL && !rex.reg_ic) {
|
|
len = 1; // matched a single byte above
|
|
} else {
|
|
// Need to match first byte again for multi-byte.
|
|
len = (int)strlen((char *)opnd);
|
|
if (cstrncmp((char *)opnd, (char *)rex.input, &len) != 0) {
|
|
status = RA_NOMATCH;
|
|
}
|
|
}
|
|
// Check for following composing character, unless %C
|
|
// follows (skips over all composing chars).
|
|
if (status != RA_NOMATCH
|
|
&& utf_composinglike((char *)rex.input, (char *)rex.input + len)
|
|
&& !rex.reg_icombine
|
|
&& OP(next) != RE_COMPOSING) {
|
|
// raaron: This code makes a composing character get
|
|
// ignored, which is the correct behavior (sometimes)
|
|
// for voweled Hebrew texts.
|
|
status = RA_NOMATCH;
|
|
}
|
|
if (status != RA_NOMATCH) {
|
|
rex.input += len;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ANYOF:
|
|
case ANYBUT: {
|
|
uint8_t *q = OPERAND(scan);
|
|
|
|
if (c == NUL) {
|
|
status = RA_NOMATCH;
|
|
} else if ((cstrchr((char *)q, c) == NULL) == (op == ANYOF)) {
|
|
status = RA_NOMATCH;
|
|
} else { // Check following combining characters
|
|
int len = utfc_ptr2len((char *)q) - utf_ptr2len((char *)q);
|
|
|
|
rex.input += utf_ptr2len((char *)rex.input);
|
|
q += utf_ptr2len((char *)q);
|
|
|
|
if (len == 0) {
|
|
break;
|
|
}
|
|
|
|
for (int i = 0; i < len; i++) {
|
|
if (q[i] != rex.input[i]) {
|
|
status = RA_NOMATCH;
|
|
break;
|
|
}
|
|
}
|
|
rex.input += len;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case MULTIBYTECODE: {
|
|
int i, len;
|
|
|
|
const uint8_t *opnd = OPERAND(scan);
|
|
// Safety check (just in case 'encoding' was changed since
|
|
// compiling the program).
|
|
if ((len = utfc_ptr2len((char *)opnd)) < 2) {
|
|
status = RA_NOMATCH;
|
|
break;
|
|
}
|
|
const int opndc = utf_ptr2char((char *)opnd);
|
|
if (utf_iscomposing(opndc)) {
|
|
// When only a composing char is given match at any
|
|
// position where that composing char appears.
|
|
status = RA_NOMATCH;
|
|
for (i = 0; rex.input[i] != NUL;
|
|
i += utf_ptr2len((char *)rex.input + i)) {
|
|
const int inpc = utf_ptr2char((char *)rex.input + i);
|
|
if (!utf_iscomposing(inpc)) {
|
|
if (i > 0) {
|
|
break;
|
|
}
|
|
} else if (opndc == inpc) {
|
|
// Include all following composing chars.
|
|
len = i + utfc_ptr2len((char *)rex.input + i);
|
|
status = RA_MATCH;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
for (i = 0; i < len; i++) {
|
|
if (opnd[i] != rex.input[i]) {
|
|
status = RA_NOMATCH;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
rex.input += len;
|
|
}
|
|
break;
|
|
|
|
case RE_COMPOSING:
|
|
// Skip composing characters.
|
|
while (utf_iscomposing(utf_ptr2char((char *)rex.input))) {
|
|
rex.input += utf_ptr2len((char *)rex.input);
|
|
}
|
|
break;
|
|
|
|
case NOTHING:
|
|
break;
|
|
|
|
case BACK: {
|
|
int i;
|
|
|
|
// When we run into BACK we need to check if we don't keep
|
|
// looping without matching any input. The second and later
|
|
// times a BACK is encountered it fails if the input is still
|
|
// at the same position as the previous time.
|
|
// The positions are stored in "backpos" and found by the
|
|
// current value of "scan", the position in the RE program.
|
|
backpos_T *bp = (backpos_T *)backpos.ga_data;
|
|
for (i = 0; i < backpos.ga_len; i++) {
|
|
if (bp[i].bp_scan == scan) {
|
|
break;
|
|
}
|
|
}
|
|
if (i == backpos.ga_len) {
|
|
backpos_T *p = GA_APPEND_VIA_PTR(backpos_T, &backpos);
|
|
p->bp_scan = scan;
|
|
} else if (reg_save_equal(&bp[i].bp_pos)) {
|
|
// Still at same position as last time, fail.
|
|
status = RA_NOMATCH;
|
|
}
|
|
|
|
assert(status != RA_FAIL);
|
|
if (status != RA_NOMATCH) {
|
|
reg_save(&bp[i].bp_pos, &backpos);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case MOPEN + 0: // Match start: \zs
|
|
case MOPEN + 1: // \(
|
|
case MOPEN + 2:
|
|
case MOPEN + 3:
|
|
case MOPEN + 4:
|
|
case MOPEN + 5:
|
|
case MOPEN + 6:
|
|
case MOPEN + 7:
|
|
case MOPEN + 8:
|
|
case MOPEN + 9:
|
|
no = op - MOPEN;
|
|
cleanup_subexpr();
|
|
rp = regstack_push(RS_MOPEN, scan);
|
|
if (rp == NULL) {
|
|
status = RA_FAIL;
|
|
} else {
|
|
rp->rs_no = (int16_t)no;
|
|
save_se(&rp->rs_un.sesave, &rex.reg_startpos[no],
|
|
&rex.reg_startp[no]);
|
|
// We simply continue and handle the result when done.
|
|
}
|
|
break;
|
|
|
|
case NOPEN: // \%(
|
|
case NCLOSE: // \) after \%(
|
|
if (regstack_push(RS_NOPEN, scan) == NULL) {
|
|
status = RA_FAIL;
|
|
}
|
|
// We simply continue and handle the result when done.
|
|
break;
|
|
|
|
case ZOPEN + 1:
|
|
case ZOPEN + 2:
|
|
case ZOPEN + 3:
|
|
case ZOPEN + 4:
|
|
case ZOPEN + 5:
|
|
case ZOPEN + 6:
|
|
case ZOPEN + 7:
|
|
case ZOPEN + 8:
|
|
case ZOPEN + 9:
|
|
no = op - ZOPEN;
|
|
cleanup_zsubexpr();
|
|
rp = regstack_push(RS_ZOPEN, scan);
|
|
if (rp == NULL) {
|
|
status = RA_FAIL;
|
|
} else {
|
|
rp->rs_no = (int16_t)no;
|
|
save_se(&rp->rs_un.sesave, ®_startzpos[no],
|
|
®_startzp[no]);
|
|
// We simply continue and handle the result when done.
|
|
}
|
|
break;
|
|
|
|
case MCLOSE + 0: // Match end: \ze
|
|
case MCLOSE + 1: // \)
|
|
case MCLOSE + 2:
|
|
case MCLOSE + 3:
|
|
case MCLOSE + 4:
|
|
case MCLOSE + 5:
|
|
case MCLOSE + 6:
|
|
case MCLOSE + 7:
|
|
case MCLOSE + 8:
|
|
case MCLOSE + 9:
|
|
no = op - MCLOSE;
|
|
cleanup_subexpr();
|
|
rp = regstack_push(RS_MCLOSE, scan);
|
|
if (rp == NULL) {
|
|
status = RA_FAIL;
|
|
} else {
|
|
rp->rs_no = (int16_t)no;
|
|
save_se(&rp->rs_un.sesave, &rex.reg_endpos[no], &rex.reg_endp[no]);
|
|
// We simply continue and handle the result when done.
|
|
}
|
|
break;
|
|
|
|
case ZCLOSE + 1: // \) after \z(
|
|
case ZCLOSE + 2:
|
|
case ZCLOSE + 3:
|
|
case ZCLOSE + 4:
|
|
case ZCLOSE + 5:
|
|
case ZCLOSE + 6:
|
|
case ZCLOSE + 7:
|
|
case ZCLOSE + 8:
|
|
case ZCLOSE + 9:
|
|
no = op - ZCLOSE;
|
|
cleanup_zsubexpr();
|
|
rp = regstack_push(RS_ZCLOSE, scan);
|
|
if (rp == NULL) {
|
|
status = RA_FAIL;
|
|
} else {
|
|
rp->rs_no = (int16_t)no;
|
|
save_se(&rp->rs_un.sesave, ®_endzpos[no],
|
|
®_endzp[no]);
|
|
// We simply continue and handle the result when done.
|
|
}
|
|
break;
|
|
|
|
case BACKREF + 1:
|
|
case BACKREF + 2:
|
|
case BACKREF + 3:
|
|
case BACKREF + 4:
|
|
case BACKREF + 5:
|
|
case BACKREF + 6:
|
|
case BACKREF + 7:
|
|
case BACKREF + 8:
|
|
case BACKREF + 9: {
|
|
int len;
|
|
|
|
no = op - BACKREF;
|
|
cleanup_subexpr();
|
|
if (!REG_MULTI) { // Single-line regexp
|
|
if (rex.reg_startp[no] == NULL || rex.reg_endp[no] == NULL) {
|
|
// Backref was not set: Match an empty string.
|
|
len = 0;
|
|
} else {
|
|
// Compare current input with back-ref in the same line.
|
|
len = (int)(rex.reg_endp[no] - rex.reg_startp[no]);
|
|
if (cstrncmp((char *)rex.reg_startp[no], (char *)rex.input, &len) != 0) {
|
|
status = RA_NOMATCH;
|
|
}
|
|
}
|
|
} else { // Multi-line regexp
|
|
if (rex.reg_startpos[no].lnum < 0 || rex.reg_endpos[no].lnum < 0) {
|
|
// Backref was not set: Match an empty string.
|
|
len = 0;
|
|
} else {
|
|
if (rex.reg_startpos[no].lnum == rex.lnum
|
|
&& rex.reg_endpos[no].lnum == rex.lnum) {
|
|
// Compare back-ref within the current line.
|
|
len = rex.reg_endpos[no].col - rex.reg_startpos[no].col;
|
|
if (cstrncmp((char *)rex.line + rex.reg_startpos[no].col,
|
|
(char *)rex.input, &len) != 0) {
|
|
status = RA_NOMATCH;
|
|
}
|
|
} else {
|
|
// Messy situation: Need to compare between two lines.
|
|
int r = match_with_backref(rex.reg_startpos[no].lnum,
|
|
rex.reg_startpos[no].col,
|
|
rex.reg_endpos[no].lnum,
|
|
rex.reg_endpos[no].col,
|
|
&len);
|
|
if (r != RA_MATCH) {
|
|
status = r;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Matched the backref, skip over it.
|
|
rex.input += len;
|
|
}
|
|
break;
|
|
|
|
case ZREF + 1:
|
|
case ZREF + 2:
|
|
case ZREF + 3:
|
|
case ZREF + 4:
|
|
case ZREF + 5:
|
|
case ZREF + 6:
|
|
case ZREF + 7:
|
|
case ZREF + 8:
|
|
case ZREF + 9:
|
|
cleanup_zsubexpr();
|
|
no = op - ZREF;
|
|
if (re_extmatch_in != NULL
|
|
&& re_extmatch_in->matches[no] != NULL) {
|
|
int len = (int)strlen((char *)re_extmatch_in->matches[no]);
|
|
if (cstrncmp((char *)re_extmatch_in->matches[no], (char *)rex.input, &len) != 0) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
rex.input += len;
|
|
}
|
|
} else {
|
|
// Backref was not set: Match an empty string.
|
|
}
|
|
break;
|
|
|
|
case BRANCH:
|
|
if (OP(next) != BRANCH) { // No choice.
|
|
next = OPERAND(scan); // Avoid recursion.
|
|
} else {
|
|
rp = regstack_push(RS_BRANCH, scan);
|
|
if (rp == NULL) {
|
|
status = RA_FAIL;
|
|
} else {
|
|
status = RA_BREAK; // rest is below
|
|
}
|
|
}
|
|
break;
|
|
|
|
case BRACE_LIMITS:
|
|
if (OP(next) == BRACE_SIMPLE) {
|
|
bl_minval = OPERAND_MIN(scan);
|
|
bl_maxval = OPERAND_MAX(scan);
|
|
} else if (OP(next) >= BRACE_COMPLEX
|
|
&& OP(next) < BRACE_COMPLEX + 10) {
|
|
no = OP(next) - BRACE_COMPLEX;
|
|
brace_min[no] = OPERAND_MIN(scan);
|
|
brace_max[no] = OPERAND_MAX(scan);
|
|
brace_count[no] = 0;
|
|
} else {
|
|
internal_error("BRACE_LIMITS");
|
|
status = RA_FAIL;
|
|
}
|
|
break;
|
|
|
|
case BRACE_COMPLEX + 0:
|
|
case BRACE_COMPLEX + 1:
|
|
case BRACE_COMPLEX + 2:
|
|
case BRACE_COMPLEX + 3:
|
|
case BRACE_COMPLEX + 4:
|
|
case BRACE_COMPLEX + 5:
|
|
case BRACE_COMPLEX + 6:
|
|
case BRACE_COMPLEX + 7:
|
|
case BRACE_COMPLEX + 8:
|
|
case BRACE_COMPLEX + 9:
|
|
no = op - BRACE_COMPLEX;
|
|
brace_count[no]++;
|
|
|
|
// If not matched enough times yet, try one more
|
|
if (brace_count[no] <= (brace_min[no] <= brace_max[no]
|
|
? brace_min[no] : brace_max[no])) {
|
|
rp = regstack_push(RS_BRCPLX_MORE, scan);
|
|
if (rp == NULL) {
|
|
status = RA_FAIL;
|
|
} else {
|
|
rp->rs_no = (int16_t)no;
|
|
reg_save(&rp->rs_un.regsave, &backpos);
|
|
next = OPERAND(scan);
|
|
// We continue and handle the result when done.
|
|
}
|
|
break;
|
|
}
|
|
|
|
// If matched enough times, may try matching some more
|
|
if (brace_min[no] <= brace_max[no]) {
|
|
// Range is the normal way around, use longest match
|
|
if (brace_count[no] <= brace_max[no]) {
|
|
rp = regstack_push(RS_BRCPLX_LONG, scan);
|
|
if (rp == NULL) {
|
|
status = RA_FAIL;
|
|
} else {
|
|
rp->rs_no = (int16_t)no;
|
|
reg_save(&rp->rs_un.regsave, &backpos);
|
|
next = OPERAND(scan);
|
|
// We continue and handle the result when done.
|
|
}
|
|
}
|
|
} else {
|
|
// Range is backwards, use shortest match first
|
|
if (brace_count[no] <= brace_min[no]) {
|
|
rp = regstack_push(RS_BRCPLX_SHORT, scan);
|
|
if (rp == NULL) {
|
|
status = RA_FAIL;
|
|
} else {
|
|
reg_save(&rp->rs_un.regsave, &backpos);
|
|
// We continue and handle the result when done.
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case BRACE_SIMPLE:
|
|
case STAR:
|
|
case PLUS: {
|
|
regstar_T rst;
|
|
|
|
// Lookahead to avoid useless match attempts when we know
|
|
// what character comes next.
|
|
if (OP(next) == EXACTLY) {
|
|
rst.nextb = *OPERAND(next);
|
|
if (rex.reg_ic) {
|
|
if (mb_isupper(rst.nextb)) {
|
|
rst.nextb_ic = mb_tolower(rst.nextb);
|
|
} else {
|
|
rst.nextb_ic = mb_toupper(rst.nextb);
|
|
}
|
|
} else {
|
|
rst.nextb_ic = rst.nextb;
|
|
}
|
|
} else {
|
|
rst.nextb = NUL;
|
|
rst.nextb_ic = NUL;
|
|
}
|
|
if (op != BRACE_SIMPLE) {
|
|
rst.minval = (op == STAR) ? 0 : 1;
|
|
rst.maxval = MAX_LIMIT;
|
|
} else {
|
|
rst.minval = bl_minval;
|
|
rst.maxval = bl_maxval;
|
|
}
|
|
|
|
// When maxval > minval, try matching as much as possible, up
|
|
// to maxval. When maxval < minval, try matching at least the
|
|
// minimal number (since the range is backwards, that's also
|
|
// maxval!).
|
|
rst.count = regrepeat(OPERAND(scan), rst.maxval);
|
|
if (got_int) {
|
|
status = RA_FAIL;
|
|
break;
|
|
}
|
|
if (rst.minval <= rst.maxval
|
|
? rst.count >= rst.minval : rst.count >= rst.maxval) {
|
|
// It could match. Prepare for trying to match what
|
|
// follows. The code is below. Parameters are stored in
|
|
// a regstar_T on the regstack.
|
|
if ((int64_t)((unsigned)regstack.ga_len >> 10) >= p_mmp) {
|
|
emsg(_(e_pattern_uses_more_memory_than_maxmempattern));
|
|
status = RA_FAIL;
|
|
} else {
|
|
ga_grow(®stack, sizeof(regstar_T));
|
|
regstack.ga_len += (int)sizeof(regstar_T);
|
|
rp = regstack_push(rst.minval <= rst.maxval ? RS_STAR_LONG : RS_STAR_SHORT, scan);
|
|
if (rp == NULL) {
|
|
status = RA_FAIL;
|
|
} else {
|
|
*(((regstar_T *)rp) - 1) = rst;
|
|
status = RA_BREAK; // skip the restore bits
|
|
}
|
|
}
|
|
} else {
|
|
status = RA_NOMATCH;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case NOMATCH:
|
|
case MATCH:
|
|
case SUBPAT:
|
|
rp = regstack_push(RS_NOMATCH, scan);
|
|
if (rp == NULL) {
|
|
status = RA_FAIL;
|
|
} else {
|
|
rp->rs_no = (int16_t)op;
|
|
reg_save(&rp->rs_un.regsave, &backpos);
|
|
next = OPERAND(scan);
|
|
// We continue and handle the result when done.
|
|
}
|
|
break;
|
|
|
|
case BEHIND:
|
|
case NOBEHIND:
|
|
// Need a bit of room to store extra positions.
|
|
if ((int64_t)((unsigned)regstack.ga_len >> 10) >= p_mmp) {
|
|
emsg(_(e_pattern_uses_more_memory_than_maxmempattern));
|
|
status = RA_FAIL;
|
|
} else {
|
|
ga_grow(®stack, sizeof(regbehind_T));
|
|
regstack.ga_len += (int)sizeof(regbehind_T);
|
|
rp = regstack_push(RS_BEHIND1, scan);
|
|
if (rp == NULL) {
|
|
status = RA_FAIL;
|
|
} else {
|
|
// Need to save the subexpr to be able to restore them
|
|
// when there is a match but we don't use it.
|
|
save_subexpr(((regbehind_T *)rp) - 1);
|
|
|
|
rp->rs_no = (int16_t)op;
|
|
reg_save(&rp->rs_un.regsave, &backpos);
|
|
// First try if what follows matches. If it does then we
|
|
// check the behind match by looping.
|
|
}
|
|
}
|
|
break;
|
|
|
|
case BHPOS:
|
|
if (REG_MULTI) {
|
|
if (behind_pos.rs_u.pos.col != (colnr_T)(rex.input - rex.line)
|
|
|| behind_pos.rs_u.pos.lnum != rex.lnum) {
|
|
status = RA_NOMATCH;
|
|
}
|
|
} else if (behind_pos.rs_u.ptr != rex.input) {
|
|
status = RA_NOMATCH;
|
|
}
|
|
break;
|
|
|
|
case NEWL:
|
|
if ((c != NUL || !REG_MULTI || rex.lnum > rex.reg_maxline
|
|
|| rex.reg_line_lbr) && (c != '\n' || !rex.reg_line_lbr)) {
|
|
status = RA_NOMATCH;
|
|
} else if (rex.reg_line_lbr) {
|
|
ADVANCE_REGINPUT();
|
|
} else {
|
|
reg_nextline();
|
|
}
|
|
break;
|
|
|
|
case END:
|
|
status = RA_MATCH; // Success!
|
|
break;
|
|
|
|
default:
|
|
iemsg(_(e_re_corr));
|
|
#ifdef REGEXP_DEBUG
|
|
printf("Illegal op code %d\n", op);
|
|
#endif
|
|
status = RA_FAIL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we can't continue sequentially, break the inner loop.
|
|
if (status != RA_CONT) {
|
|
break;
|
|
}
|
|
|
|
// Continue in inner loop, advance to next item.
|
|
scan = next;
|
|
} // end of inner loop
|
|
|
|
// If there is something on the regstack execute the code for the state.
|
|
// If the state is popped then loop and use the older state.
|
|
while (!GA_EMPTY(®stack) && status != RA_FAIL) {
|
|
rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len) - 1;
|
|
switch (rp->rs_state) {
|
|
case RS_NOPEN:
|
|
// Result is passed on as-is, simply pop the state.
|
|
regstack_pop(&scan);
|
|
break;
|
|
|
|
case RS_MOPEN:
|
|
// Pop the state. Restore pointers when there is no match.
|
|
if (status == RA_NOMATCH) {
|
|
restore_se(&rp->rs_un.sesave, &rex.reg_startpos[rp->rs_no],
|
|
&rex.reg_startp[rp->rs_no]);
|
|
}
|
|
regstack_pop(&scan);
|
|
break;
|
|
|
|
case RS_ZOPEN:
|
|
// Pop the state. Restore pointers when there is no match.
|
|
if (status == RA_NOMATCH) {
|
|
restore_se(&rp->rs_un.sesave, ®_startzpos[rp->rs_no],
|
|
®_startzp[rp->rs_no]);
|
|
}
|
|
regstack_pop(&scan);
|
|
break;
|
|
|
|
case RS_MCLOSE:
|
|
// Pop the state. Restore pointers when there is no match.
|
|
if (status == RA_NOMATCH) {
|
|
restore_se(&rp->rs_un.sesave, &rex.reg_endpos[rp->rs_no],
|
|
&rex.reg_endp[rp->rs_no]);
|
|
}
|
|
regstack_pop(&scan);
|
|
break;
|
|
|
|
case RS_ZCLOSE:
|
|
// Pop the state. Restore pointers when there is no match.
|
|
if (status == RA_NOMATCH) {
|
|
restore_se(&rp->rs_un.sesave, ®_endzpos[rp->rs_no],
|
|
®_endzp[rp->rs_no]);
|
|
}
|
|
regstack_pop(&scan);
|
|
break;
|
|
|
|
case RS_BRANCH:
|
|
if (status == RA_MATCH) {
|
|
// this branch matched, use it
|
|
regstack_pop(&scan);
|
|
} else {
|
|
if (status != RA_BREAK) {
|
|
// After a non-matching branch: try next one.
|
|
reg_restore(&rp->rs_un.regsave, &backpos);
|
|
scan = rp->rs_scan;
|
|
}
|
|
if (scan == NULL || OP(scan) != BRANCH) {
|
|
// no more branches, didn't find a match
|
|
status = RA_NOMATCH;
|
|
regstack_pop(&scan);
|
|
} else {
|
|
// Prepare to try a branch.
|
|
rp->rs_scan = regnext(scan);
|
|
reg_save(&rp->rs_un.regsave, &backpos);
|
|
scan = OPERAND(scan);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case RS_BRCPLX_MORE:
|
|
// Pop the state. Restore pointers when there is no match.
|
|
if (status == RA_NOMATCH) {
|
|
reg_restore(&rp->rs_un.regsave, &backpos);
|
|
brace_count[rp->rs_no]--; // decrement match count
|
|
}
|
|
regstack_pop(&scan);
|
|
break;
|
|
|
|
case RS_BRCPLX_LONG:
|
|
// Pop the state. Restore pointers when there is no match.
|
|
if (status == RA_NOMATCH) {
|
|
// There was no match, but we did find enough matches.
|
|
reg_restore(&rp->rs_un.regsave, &backpos);
|
|
brace_count[rp->rs_no]--;
|
|
// continue with the items after "\{}"
|
|
status = RA_CONT;
|
|
}
|
|
regstack_pop(&scan);
|
|
if (status == RA_CONT) {
|
|
scan = regnext(scan);
|
|
}
|
|
break;
|
|
|
|
case RS_BRCPLX_SHORT:
|
|
// Pop the state. Restore pointers when there is no match.
|
|
if (status == RA_NOMATCH) {
|
|
// There was no match, try to match one more item.
|
|
reg_restore(&rp->rs_un.regsave, &backpos);
|
|
}
|
|
regstack_pop(&scan);
|
|
if (status == RA_NOMATCH) {
|
|
scan = OPERAND(scan);
|
|
status = RA_CONT;
|
|
}
|
|
break;
|
|
|
|
case RS_NOMATCH:
|
|
// Pop the state. If the operand matches for NOMATCH or
|
|
// doesn't match for MATCH/SUBPAT, we fail. Otherwise backup,
|
|
// except for SUBPAT, and continue with the next item.
|
|
if (status == (rp->rs_no == NOMATCH ? RA_MATCH : RA_NOMATCH)) {
|
|
status = RA_NOMATCH;
|
|
} else {
|
|
status = RA_CONT;
|
|
if (rp->rs_no != SUBPAT) { // zero-width
|
|
reg_restore(&rp->rs_un.regsave, &backpos);
|
|
}
|
|
}
|
|
regstack_pop(&scan);
|
|
if (status == RA_CONT) {
|
|
scan = regnext(scan);
|
|
}
|
|
break;
|
|
|
|
case RS_BEHIND1:
|
|
if (status == RA_NOMATCH) {
|
|
regstack_pop(&scan);
|
|
regstack.ga_len -= (int)sizeof(regbehind_T);
|
|
} else {
|
|
// The stuff after BEHIND/NOBEHIND matches. Now try if
|
|
// the behind part does (not) match before the current
|
|
// position in the input. This must be done at every
|
|
// position in the input and checking if the match ends at
|
|
// the current position.
|
|
|
|
// save the position after the found match for next
|
|
reg_save(&(((regbehind_T *)rp) - 1)->save_after, &backpos);
|
|
|
|
// Start looking for a match with operand at the current
|
|
// position. Go back one character until we find the
|
|
// result, hitting the start of the line or the previous
|
|
// line (for multi-line matching).
|
|
// Set behind_pos to where the match should end, BHPOS
|
|
// will match it. Save the current value.
|
|
(((regbehind_T *)rp) - 1)->save_behind = behind_pos;
|
|
behind_pos = rp->rs_un.regsave;
|
|
|
|
rp->rs_state = RS_BEHIND2;
|
|
|
|
reg_restore(&rp->rs_un.regsave, &backpos);
|
|
scan = OPERAND(rp->rs_scan) + 4;
|
|
}
|
|
break;
|
|
|
|
case RS_BEHIND2:
|
|
// Looping for BEHIND / NOBEHIND match.
|
|
if (status == RA_MATCH && reg_save_equal(&behind_pos)) {
|
|
// found a match that ends where "next" started
|
|
behind_pos = (((regbehind_T *)rp) - 1)->save_behind;
|
|
if (rp->rs_no == BEHIND) {
|
|
reg_restore(&(((regbehind_T *)rp) - 1)->save_after,
|
|
&backpos);
|
|
} else {
|
|
// But we didn't want a match. Need to restore the
|
|
// subexpr, because what follows matched, so they have
|
|
// been set.
|
|
status = RA_NOMATCH;
|
|
restore_subexpr(((regbehind_T *)rp) - 1);
|
|
}
|
|
regstack_pop(&scan);
|
|
regstack.ga_len -= (int)sizeof(regbehind_T);
|
|
} else {
|
|
int64_t limit;
|
|
|
|
// No match or a match that doesn't end where we want it: Go
|
|
// back one character. May go to previous line once.
|
|
no = OK;
|
|
limit = OPERAND_MIN(rp->rs_scan);
|
|
if (REG_MULTI) {
|
|
if (limit > 0
|
|
&& ((rp->rs_un.regsave.rs_u.pos.lnum
|
|
< behind_pos.rs_u.pos.lnum
|
|
? (colnr_T)strlen((char *)rex.line)
|
|
: behind_pos.rs_u.pos.col)
|
|
- rp->rs_un.regsave.rs_u.pos.col >= limit)) {
|
|
no = FAIL;
|
|
} else if (rp->rs_un.regsave.rs_u.pos.col == 0) {
|
|
if (rp->rs_un.regsave.rs_u.pos.lnum
|
|
< behind_pos.rs_u.pos.lnum
|
|
|| reg_getline(--rp->rs_un.regsave.rs_u.pos.lnum)
|
|
== NULL) {
|
|
no = FAIL;
|
|
} else {
|
|
reg_restore(&rp->rs_un.regsave, &backpos);
|
|
rp->rs_un.regsave.rs_u.pos.col =
|
|
(colnr_T)strlen((char *)rex.line);
|
|
}
|
|
} else {
|
|
const uint8_t *const line =
|
|
(uint8_t *)reg_getline(rp->rs_un.regsave.rs_u.pos.lnum);
|
|
|
|
rp->rs_un.regsave.rs_u.pos.col -=
|
|
utf_head_off((char *)line,
|
|
(char *)line + rp->rs_un.regsave.rs_u.pos.col - 1)
|
|
+ 1;
|
|
}
|
|
} else {
|
|
if (rp->rs_un.regsave.rs_u.ptr == rex.line) {
|
|
no = FAIL;
|
|
} else {
|
|
MB_PTR_BACK(rex.line, rp->rs_un.regsave.rs_u.ptr);
|
|
if (limit > 0
|
|
&& (behind_pos.rs_u.ptr - rp->rs_un.regsave.rs_u.ptr) > (ptrdiff_t)limit) {
|
|
no = FAIL;
|
|
}
|
|
}
|
|
}
|
|
if (no == OK) {
|
|
// Advanced, prepare for finding match again.
|
|
reg_restore(&rp->rs_un.regsave, &backpos);
|
|
scan = OPERAND(rp->rs_scan) + 4;
|
|
if (status == RA_MATCH) {
|
|
// We did match, so subexpr may have been changed,
|
|
// need to restore them for the next try.
|
|
status = RA_NOMATCH;
|
|
restore_subexpr(((regbehind_T *)rp) - 1);
|
|
}
|
|
} else {
|
|
// Can't advance. For NOBEHIND that's a match.
|
|
behind_pos = (((regbehind_T *)rp) - 1)->save_behind;
|
|
if (rp->rs_no == NOBEHIND) {
|
|
reg_restore(&(((regbehind_T *)rp) - 1)->save_after,
|
|
&backpos);
|
|
status = RA_MATCH;
|
|
} else {
|
|
// We do want a proper match. Need to restore the
|
|
// subexpr if we had a match, because they may have
|
|
// been set.
|
|
if (status == RA_MATCH) {
|
|
status = RA_NOMATCH;
|
|
restore_subexpr(((regbehind_T *)rp) - 1);
|
|
}
|
|
}
|
|
regstack_pop(&scan);
|
|
regstack.ga_len -= (int)sizeof(regbehind_T);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case RS_STAR_LONG:
|
|
case RS_STAR_SHORT: {
|
|
regstar_T *rst = ((regstar_T *)rp) - 1;
|
|
|
|
if (status == RA_MATCH) {
|
|
regstack_pop(&scan);
|
|
regstack.ga_len -= (int)sizeof(regstar_T);
|
|
break;
|
|
}
|
|
|
|
// Tried once already, restore input pointers.
|
|
if (status != RA_BREAK) {
|
|
reg_restore(&rp->rs_un.regsave, &backpos);
|
|
}
|
|
|
|
// Repeat until we found a position where it could match.
|
|
while (true) {
|
|
if (status != RA_BREAK) {
|
|
// Tried first position already, advance.
|
|
if (rp->rs_state == RS_STAR_LONG) {
|
|
// Trying for longest match, but couldn't or
|
|
// didn't match -- back up one char.
|
|
if (--rst->count < rst->minval) {
|
|
break;
|
|
}
|
|
if (rex.input == rex.line) {
|
|
// backup to last char of previous line
|
|
if (rex.lnum == 0) {
|
|
status = RA_NOMATCH;
|
|
break;
|
|
}
|
|
rex.lnum--;
|
|
rex.line = (uint8_t *)reg_getline(rex.lnum);
|
|
// Just in case regrepeat() didn't count right.
|
|
if (rex.line == NULL) {
|
|
break;
|
|
}
|
|
rex.input = rex.line + strlen((char *)rex.line);
|
|
reg_breakcheck();
|
|
} else {
|
|
MB_PTR_BACK(rex.line, rex.input);
|
|
}
|
|
} else {
|
|
// Range is backwards, use shortest match first.
|
|
// Careful: maxval and minval are exchanged!
|
|
// Couldn't or didn't match: try advancing one
|
|
// char.
|
|
if (rst->count == rst->minval
|
|
|| regrepeat(OPERAND(rp->rs_scan), 1L) == 0) {
|
|
break;
|
|
}
|
|
rst->count++;
|
|
}
|
|
if (got_int) {
|
|
break;
|
|
}
|
|
} else {
|
|
status = RA_NOMATCH;
|
|
}
|
|
|
|
// If it could match, try it.
|
|
if (rst->nextb == NUL || *rex.input == rst->nextb
|
|
|| *rex.input == rst->nextb_ic) {
|
|
reg_save(&rp->rs_un.regsave, &backpos);
|
|
scan = regnext(rp->rs_scan);
|
|
status = RA_CONT;
|
|
break;
|
|
}
|
|
}
|
|
if (status != RA_CONT) {
|
|
// Failed.
|
|
regstack_pop(&scan);
|
|
regstack.ga_len -= (int)sizeof(regstar_T);
|
|
status = RA_NOMATCH;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
// If we want to continue the inner loop or didn't pop a state
|
|
// continue matching loop
|
|
if (status == RA_CONT || rp == (regitem_T *)
|
|
((char *)regstack.ga_data + regstack.ga_len) - 1) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// May need to continue with the inner loop, starting at "scan".
|
|
if (status == RA_CONT) {
|
|
continue;
|
|
}
|
|
|
|
// If the regstack is empty or something failed we are done.
|
|
if (GA_EMPTY(®stack) || status == RA_FAIL) {
|
|
if (scan == NULL) {
|
|
// We get here only if there's trouble -- normally "case END" is
|
|
// the terminating point.
|
|
iemsg(_(e_re_corr));
|
|
#ifdef REGEXP_DEBUG
|
|
printf("Premature EOL\n");
|
|
#endif
|
|
}
|
|
return status == RA_MATCH;
|
|
}
|
|
} // End of loop until the regstack is empty.
|
|
|
|
// NOTREACHED
|
|
}
|
|
|
|
/// Try match of "prog" with at rex.line["col"].
|
|
///
|
|
/// @param tm timeout limit or NULL
|
|
/// @param timed_out flag set on timeout or NULL
|
|
///
|
|
/// @return 0 for failure, or number of lines contained in the match.
|
|
static int regtry(bt_regprog_T *prog, colnr_T col, proftime_T *tm, int *timed_out)
|
|
{
|
|
rex.input = rex.line + col;
|
|
rex.need_clear_subexpr = true;
|
|
// Clear the external match subpointers if necessaey.
|
|
rex.need_clear_zsubexpr = (prog->reghasz == REX_SET);
|
|
|
|
if (regmatch(prog->program + 1, tm, timed_out) == 0) {
|
|
return 0;
|
|
}
|
|
|
|
cleanup_subexpr();
|
|
if (REG_MULTI) {
|
|
if (rex.reg_startpos[0].lnum < 0) {
|
|
rex.reg_startpos[0].lnum = 0;
|
|
rex.reg_startpos[0].col = col;
|
|
}
|
|
if (rex.reg_endpos[0].lnum < 0) {
|
|
rex.reg_endpos[0].lnum = rex.lnum;
|
|
rex.reg_endpos[0].col = (int)(rex.input - rex.line);
|
|
} else {
|
|
// Use line number of "\ze".
|
|
rex.lnum = rex.reg_endpos[0].lnum;
|
|
}
|
|
} else {
|
|
if (rex.reg_startp[0] == NULL) {
|
|
rex.reg_startp[0] = rex.line + col;
|
|
}
|
|
if (rex.reg_endp[0] == NULL) {
|
|
rex.reg_endp[0] = rex.input;
|
|
}
|
|
}
|
|
// Package any found \z(...\) matches for export. Default is none.
|
|
unref_extmatch(re_extmatch_out);
|
|
re_extmatch_out = NULL;
|
|
|
|
if (prog->reghasz == REX_SET) {
|
|
int i;
|
|
|
|
cleanup_zsubexpr();
|
|
re_extmatch_out = make_extmatch();
|
|
for (i = 0; i < NSUBEXP; i++) {
|
|
if (REG_MULTI) {
|
|
// Only accept single line matches.
|
|
if (reg_startzpos[i].lnum >= 0
|
|
&& reg_endzpos[i].lnum == reg_startzpos[i].lnum
|
|
&& reg_endzpos[i].col >= reg_startzpos[i].col) {
|
|
re_extmatch_out->matches[i] =
|
|
(uint8_t *)xstrnsave(reg_getline(reg_startzpos[i].lnum) + reg_startzpos[i].col,
|
|
(size_t)(reg_endzpos[i].col - reg_startzpos[i].col));
|
|
}
|
|
} else {
|
|
if (reg_startzp[i] != NULL && reg_endzp[i] != NULL) {
|
|
re_extmatch_out->matches[i] =
|
|
(uint8_t *)xstrnsave((char *)reg_startzp[i], (size_t)(reg_endzp[i] - reg_startzp[i]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return 1 + rex.lnum;
|
|
}
|
|
|
|
/// Match a regexp against a string ("line" points to the string) or multiple
|
|
/// lines (if "line" is NULL, use reg_getline()).
|
|
///
|
|
/// @param startcol column to start looking for match
|
|
/// @param tm timeout limit or NULL
|
|
/// @param timed_out flag set on timeout or NULL
|
|
///
|
|
/// @return 0 for failure, or number of lines contained in the match.
|
|
static int bt_regexec_both(uint8_t *line, colnr_T startcol, proftime_T *tm, int *timed_out)
|
|
{
|
|
bt_regprog_T *prog;
|
|
uint8_t *s;
|
|
colnr_T col = startcol;
|
|
int retval = 0;
|
|
|
|
// Create "regstack" and "backpos" if they are not allocated yet.
|
|
// We allocate *_INITIAL amount of bytes first and then set the grow size
|
|
// to much bigger value to avoid many malloc calls in case of deep regular
|
|
// expressions.
|
|
if (regstack.ga_data == NULL) {
|
|
// Use an item size of 1 byte, since we push different things
|
|
// onto the regstack.
|
|
ga_init(®stack, 1, REGSTACK_INITIAL);
|
|
ga_grow(®stack, REGSTACK_INITIAL);
|
|
ga_set_growsize(®stack, REGSTACK_INITIAL * 8);
|
|
}
|
|
|
|
if (backpos.ga_data == NULL) {
|
|
ga_init(&backpos, sizeof(backpos_T), BACKPOS_INITIAL);
|
|
ga_grow(&backpos, BACKPOS_INITIAL);
|
|
ga_set_growsize(&backpos, BACKPOS_INITIAL * 8);
|
|
}
|
|
|
|
if (REG_MULTI) {
|
|
prog = (bt_regprog_T *)rex.reg_mmatch->regprog;
|
|
line = (uint8_t *)reg_getline(0);
|
|
rex.reg_startpos = rex.reg_mmatch->startpos;
|
|
rex.reg_endpos = rex.reg_mmatch->endpos;
|
|
} else {
|
|
prog = (bt_regprog_T *)rex.reg_match->regprog;
|
|
rex.reg_startp = (uint8_t **)rex.reg_match->startp;
|
|
rex.reg_endp = (uint8_t **)rex.reg_match->endp;
|
|
}
|
|
|
|
// Be paranoid...
|
|
if (prog == NULL || line == NULL) {
|
|
iemsg(_(e_null));
|
|
goto theend;
|
|
}
|
|
|
|
// Check validity of program.
|
|
if (prog_magic_wrong()) {
|
|
goto theend;
|
|
}
|
|
|
|
// If the start column is past the maximum column: no need to try.
|
|
if (rex.reg_maxcol > 0 && col >= rex.reg_maxcol) {
|
|
goto theend;
|
|
}
|
|
|
|
// If pattern contains "\c" or "\C": overrule value of rex.reg_ic
|
|
if (prog->regflags & RF_ICASE) {
|
|
rex.reg_ic = true;
|
|
} else if (prog->regflags & RF_NOICASE) {
|
|
rex.reg_ic = false;
|
|
}
|
|
|
|
// If pattern contains "\Z" overrule value of rex.reg_icombine
|
|
if (prog->regflags & RF_ICOMBINE) {
|
|
rex.reg_icombine = true;
|
|
}
|
|
|
|
// If there is a "must appear" string, look for it.
|
|
if (prog->regmust != NULL) {
|
|
int c = utf_ptr2char((char *)prog->regmust);
|
|
s = line + col;
|
|
|
|
// This is used very often, esp. for ":global". Use two versions of
|
|
// the loop to avoid overhead of conditions.
|
|
if (!rex.reg_ic) {
|
|
while ((s = (uint8_t *)vim_strchr((char *)s, c)) != NULL) {
|
|
if (cstrncmp((char *)s, (char *)prog->regmust, &prog->regmlen) == 0) {
|
|
break; // Found it.
|
|
}
|
|
MB_PTR_ADV(s);
|
|
}
|
|
} else {
|
|
while ((s = (uint8_t *)cstrchr((char *)s, c)) != NULL) {
|
|
if (cstrncmp((char *)s, (char *)prog->regmust, &prog->regmlen) == 0) {
|
|
break; // Found it.
|
|
}
|
|
MB_PTR_ADV(s);
|
|
}
|
|
}
|
|
if (s == NULL) { // Not present.
|
|
goto theend;
|
|
}
|
|
}
|
|
|
|
rex.line = line;
|
|
rex.lnum = 0;
|
|
reg_toolong = false;
|
|
|
|
// Simplest case: Anchored match need be tried only once.
|
|
if (prog->reganch) {
|
|
int c = utf_ptr2char((char *)rex.line + col);
|
|
if (prog->regstart == NUL
|
|
|| prog->regstart == c
|
|
|| (rex.reg_ic
|
|
&& (utf_fold(prog->regstart) == utf_fold(c)
|
|
|| (c < 255 && prog->regstart < 255
|
|
&& mb_tolower(prog->regstart) == mb_tolower(c))))) {
|
|
retval = regtry(prog, col, tm, timed_out);
|
|
} else {
|
|
retval = 0;
|
|
}
|
|
} else {
|
|
int tm_count = 0;
|
|
// Messy cases: unanchored match.
|
|
while (!got_int) {
|
|
if (prog->regstart != NUL) {
|
|
// Skip until the char we know it must start with.
|
|
s = (uint8_t *)cstrchr((char *)rex.line + col, prog->regstart);
|
|
if (s == NULL) {
|
|
retval = 0;
|
|
break;
|
|
}
|
|
col = (int)(s - rex.line);
|
|
}
|
|
|
|
// Check for maximum column to try.
|
|
if (rex.reg_maxcol > 0 && col >= rex.reg_maxcol) {
|
|
retval = 0;
|
|
break;
|
|
}
|
|
|
|
retval = regtry(prog, col, tm, timed_out);
|
|
if (retval > 0) {
|
|
break;
|
|
}
|
|
|
|
// if not currently on the first line, get it again
|
|
if (rex.lnum != 0) {
|
|
rex.lnum = 0;
|
|
rex.line = (uint8_t *)reg_getline(0);
|
|
}
|
|
if (rex.line[col] == NUL) {
|
|
break;
|
|
}
|
|
col += utfc_ptr2len((char *)rex.line + col);
|
|
// Check for timeout once in a twenty times to avoid overhead.
|
|
if (tm != NULL && ++tm_count == 20) {
|
|
tm_count = 0;
|
|
if (profile_passed_limit(*tm)) {
|
|
if (timed_out != NULL) {
|
|
*timed_out = true;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
theend:
|
|
// Free "reg_tofree" when it's a bit big.
|
|
// Free regstack and backpos if they are bigger than their initial size.
|
|
if (reg_tofreelen > 400) {
|
|
XFREE_CLEAR(reg_tofree);
|
|
}
|
|
if (regstack.ga_maxlen > REGSTACK_INITIAL) {
|
|
ga_clear(®stack);
|
|
}
|
|
if (backpos.ga_maxlen > BACKPOS_INITIAL) {
|
|
ga_clear(&backpos);
|
|
}
|
|
|
|
if (retval > 0) {
|
|
// Make sure the end is never before the start. Can happen when \zs
|
|
// and \ze are used.
|
|
if (REG_MULTI) {
|
|
const lpos_T *const start = &rex.reg_mmatch->startpos[0];
|
|
const lpos_T *const end = &rex.reg_mmatch->endpos[0];
|
|
|
|
if (end->lnum < start->lnum
|
|
|| (end->lnum == start->lnum && end->col < start->col)) {
|
|
rex.reg_mmatch->endpos[0] = rex.reg_mmatch->startpos[0];
|
|
}
|
|
|
|
// startpos[0] may be set by "\zs", also return the column where
|
|
// the whole pattern matched.
|
|
rex.reg_mmatch->rmm_matchcol = col;
|
|
} else {
|
|
if (rex.reg_match->endp[0] < rex.reg_match->startp[0]) {
|
|
rex.reg_match->endp[0] = rex.reg_match->startp[0];
|
|
}
|
|
|
|
// startpos[0] may be set by "\zs", also return the column where
|
|
// the whole pattern matched.
|
|
rex.reg_match->rm_matchcol = col;
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/// Match a regexp against a string.
|
|
/// "rmp->regprog" is a compiled regexp as returned by vim_regcomp().
|
|
/// Uses curbuf for line count and 'iskeyword'.
|
|
/// If "line_lbr" is true, consider a "\n" in "line" to be a line break.
|
|
///
|
|
/// @param line string to match against
|
|
/// @param col column to start looking for match
|
|
///
|
|
/// @return 0 for failure, number of lines contained in the match otherwise.
|
|
static int bt_regexec_nl(regmatch_T *rmp, uint8_t *line, colnr_T col, bool line_lbr)
|
|
{
|
|
rex.reg_match = rmp;
|
|
rex.reg_mmatch = NULL;
|
|
rex.reg_maxline = 0;
|
|
rex.reg_line_lbr = line_lbr;
|
|
rex.reg_buf = curbuf;
|
|
rex.reg_win = NULL;
|
|
rex.reg_ic = rmp->rm_ic;
|
|
rex.reg_icombine = false;
|
|
rex.reg_nobreak = rmp->regprog->re_flags & RE_NOBREAK;
|
|
rex.reg_maxcol = 0;
|
|
|
|
int64_t r = bt_regexec_both(line, col, NULL, NULL);
|
|
assert(r <= INT_MAX);
|
|
return (int)r;
|
|
}
|
|
|
|
/// Matches a regexp against multiple lines.
|
|
/// "rmp->regprog" is a compiled regexp as returned by vim_regcomp().
|
|
/// Uses curbuf for line count and 'iskeyword'.
|
|
///
|
|
/// @param win Window in which to search or NULL
|
|
/// @param buf Buffer in which to search
|
|
/// @param lnum Number of line to start looking for match
|
|
/// @param col Column to start looking for match
|
|
/// @param tm Timeout limit or NULL
|
|
///
|
|
/// @return zero if there is no match and number of lines contained in the match
|
|
/// otherwise.
|
|
static int bt_regexec_multi(regmmatch_T *rmp, win_T *win, buf_T *buf, linenr_T lnum, colnr_T col,
|
|
proftime_T *tm, int *timed_out)
|
|
{
|
|
init_regexec_multi(rmp, win, buf, lnum);
|
|
return bt_regexec_both(NULL, col, tm, timed_out);
|
|
}
|
|
|
|
// Compare a number with the operand of RE_LNUM, RE_COL or RE_VCOL.
|
|
static int re_num_cmp(uint32_t val, const uint8_t *scan)
|
|
{
|
|
uint32_t n = (uint32_t)OPERAND_MIN(scan);
|
|
|
|
if (OPERAND_CMP(scan) == '>') {
|
|
return val > n;
|
|
}
|
|
if (OPERAND_CMP(scan) == '<') {
|
|
return val < n;
|
|
}
|
|
return val == n;
|
|
}
|
|
|
|
#ifdef BT_REGEXP_DUMP
|
|
|
|
// regdump - dump a regexp onto stdout in vaguely comprehensible form
|
|
static void regdump(uint8_t *pattern, bt_regprog_T *r)
|
|
{
|
|
uint8_t *s;
|
|
int op = EXACTLY; // Arbitrary non-END op.
|
|
uint8_t *next;
|
|
uint8_t *end = NULL;
|
|
FILE *f;
|
|
|
|
# ifdef BT_REGEXP_LOG
|
|
f = fopen("bt_regexp_log.log", "a");
|
|
# else
|
|
f = stdout;
|
|
# endif
|
|
if (f == NULL) {
|
|
return;
|
|
}
|
|
fprintf(f, "-------------------------------------\n\r\nregcomp(%s):\r\n",
|
|
pattern);
|
|
|
|
s = r->program + 1;
|
|
// Loop until we find the END that isn't before a referred next (an END
|
|
// can also appear in a NOMATCH operand).
|
|
while (op != END || s <= end) {
|
|
op = OP(s);
|
|
fprintf(f, "%2d%s", (int)(s - r->program), regprop(s)); // Where, what.
|
|
next = regnext(s);
|
|
if (next == NULL) { // Next ptr.
|
|
fprintf(f, "(0)");
|
|
} else {
|
|
fprintf(f, "(%d)", (int)((s - r->program) + (next - s)));
|
|
}
|
|
if (end < next) {
|
|
end = next;
|
|
}
|
|
if (op == BRACE_LIMITS) {
|
|
// Two ints
|
|
fprintf(f, " minval %" PRId64 ", maxval %" PRId64,
|
|
(int64_t)OPERAND_MIN(s), (int64_t)OPERAND_MAX(s));
|
|
s += 8;
|
|
} else if (op == BEHIND || op == NOBEHIND) {
|
|
// one int
|
|
fprintf(f, " count %" PRId64, (int64_t)OPERAND_MIN(s));
|
|
s += 4;
|
|
} else if (op == RE_LNUM || op == RE_COL || op == RE_VCOL) {
|
|
// one int plus comparator
|
|
fprintf(f, " count %" PRId64, (int64_t)OPERAND_MIN(s));
|
|
s += 5;
|
|
}
|
|
s += 3;
|
|
if (op == ANYOF || op == ANYOF + ADD_NL
|
|
|| op == ANYBUT || op == ANYBUT + ADD_NL
|
|
|| op == EXACTLY) {
|
|
// Literal string, where present.
|
|
fprintf(f, "\nxxxxxxxxx\n");
|
|
while (*s != NUL) {
|
|
fprintf(f, "%c", *s++);
|
|
}
|
|
fprintf(f, "\nxxxxxxxxx\n");
|
|
s++;
|
|
}
|
|
fprintf(f, "\r\n");
|
|
}
|
|
|
|
// Header fields of interest.
|
|
if (r->regstart != NUL) {
|
|
fprintf(f, "start `%s' 0x%x; ", r->regstart < 256
|
|
? (char *)transchar(r->regstart)
|
|
: "multibyte", r->regstart);
|
|
}
|
|
if (r->reganch) {
|
|
fprintf(f, "anchored; ");
|
|
}
|
|
if (r->regmust != NULL) {
|
|
fprintf(f, "must have \"%s\"", r->regmust);
|
|
}
|
|
fprintf(f, "\r\n");
|
|
|
|
# ifdef BT_REGEXP_LOG
|
|
fclose(f);
|
|
# endif
|
|
}
|
|
#endif // BT_REGEXP_DUMP
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
|
|
// regprop - printable representation of opcode
|
|
static uint8_t *regprop(uint8_t *op)
|
|
{
|
|
char *p;
|
|
static char buf[50];
|
|
|
|
STRCPY(buf, ":");
|
|
|
|
switch ((int)OP(op)) {
|
|
case BOL:
|
|
p = "BOL";
|
|
break;
|
|
case EOL:
|
|
p = "EOL";
|
|
break;
|
|
case RE_BOF:
|
|
p = "BOF";
|
|
break;
|
|
case RE_EOF:
|
|
p = "EOF";
|
|
break;
|
|
case CURSOR:
|
|
p = "CURSOR";
|
|
break;
|
|
case RE_VISUAL:
|
|
p = "RE_VISUAL";
|
|
break;
|
|
case RE_LNUM:
|
|
p = "RE_LNUM";
|
|
break;
|
|
case RE_MARK:
|
|
p = "RE_MARK";
|
|
break;
|
|
case RE_COL:
|
|
p = "RE_COL";
|
|
break;
|
|
case RE_VCOL:
|
|
p = "RE_VCOL";
|
|
break;
|
|
case BOW:
|
|
p = "BOW";
|
|
break;
|
|
case EOW:
|
|
p = "EOW";
|
|
break;
|
|
case ANY:
|
|
p = "ANY";
|
|
break;
|
|
case ANY + ADD_NL:
|
|
p = "ANY+NL";
|
|
break;
|
|
case ANYOF:
|
|
p = "ANYOF";
|
|
break;
|
|
case ANYOF + ADD_NL:
|
|
p = "ANYOF+NL";
|
|
break;
|
|
case ANYBUT:
|
|
p = "ANYBUT";
|
|
break;
|
|
case ANYBUT + ADD_NL:
|
|
p = "ANYBUT+NL";
|
|
break;
|
|
case IDENT:
|
|
p = "IDENT";
|
|
break;
|
|
case IDENT + ADD_NL:
|
|
p = "IDENT+NL";
|
|
break;
|
|
case SIDENT:
|
|
p = "SIDENT";
|
|
break;
|
|
case SIDENT + ADD_NL:
|
|
p = "SIDENT+NL";
|
|
break;
|
|
case KWORD:
|
|
p = "KWORD";
|
|
break;
|
|
case KWORD + ADD_NL:
|
|
p = "KWORD+NL";
|
|
break;
|
|
case SKWORD:
|
|
p = "SKWORD";
|
|
break;
|
|
case SKWORD + ADD_NL:
|
|
p = "SKWORD+NL";
|
|
break;
|
|
case FNAME:
|
|
p = "FNAME";
|
|
break;
|
|
case FNAME + ADD_NL:
|
|
p = "FNAME+NL";
|
|
break;
|
|
case SFNAME:
|
|
p = "SFNAME";
|
|
break;
|
|
case SFNAME + ADD_NL:
|
|
p = "SFNAME+NL";
|
|
break;
|
|
case PRINT:
|
|
p = "PRINT";
|
|
break;
|
|
case PRINT + ADD_NL:
|
|
p = "PRINT+NL";
|
|
break;
|
|
case SPRINT:
|
|
p = "SPRINT";
|
|
break;
|
|
case SPRINT + ADD_NL:
|
|
p = "SPRINT+NL";
|
|
break;
|
|
case WHITE:
|
|
p = "WHITE";
|
|
break;
|
|
case WHITE + ADD_NL:
|
|
p = "WHITE+NL";
|
|
break;
|
|
case NWHITE:
|
|
p = "NWHITE";
|
|
break;
|
|
case NWHITE + ADD_NL:
|
|
p = "NWHITE+NL";
|
|
break;
|
|
case DIGIT:
|
|
p = "DIGIT";
|
|
break;
|
|
case DIGIT + ADD_NL:
|
|
p = "DIGIT+NL";
|
|
break;
|
|
case NDIGIT:
|
|
p = "NDIGIT";
|
|
break;
|
|
case NDIGIT + ADD_NL:
|
|
p = "NDIGIT+NL";
|
|
break;
|
|
case HEX:
|
|
p = "HEX";
|
|
break;
|
|
case HEX + ADD_NL:
|
|
p = "HEX+NL";
|
|
break;
|
|
case NHEX:
|
|
p = "NHEX";
|
|
break;
|
|
case NHEX + ADD_NL:
|
|
p = "NHEX+NL";
|
|
break;
|
|
case OCTAL:
|
|
p = "OCTAL";
|
|
break;
|
|
case OCTAL + ADD_NL:
|
|
p = "OCTAL+NL";
|
|
break;
|
|
case NOCTAL:
|
|
p = "NOCTAL";
|
|
break;
|
|
case NOCTAL + ADD_NL:
|
|
p = "NOCTAL+NL";
|
|
break;
|
|
case WORD:
|
|
p = "WORD";
|
|
break;
|
|
case WORD + ADD_NL:
|
|
p = "WORD+NL";
|
|
break;
|
|
case NWORD:
|
|
p = "NWORD";
|
|
break;
|
|
case NWORD + ADD_NL:
|
|
p = "NWORD+NL";
|
|
break;
|
|
case HEAD:
|
|
p = "HEAD";
|
|
break;
|
|
case HEAD + ADD_NL:
|
|
p = "HEAD+NL";
|
|
break;
|
|
case NHEAD:
|
|
p = "NHEAD";
|
|
break;
|
|
case NHEAD + ADD_NL:
|
|
p = "NHEAD+NL";
|
|
break;
|
|
case ALPHA:
|
|
p = "ALPHA";
|
|
break;
|
|
case ALPHA + ADD_NL:
|
|
p = "ALPHA+NL";
|
|
break;
|
|
case NALPHA:
|
|
p = "NALPHA";
|
|
break;
|
|
case NALPHA + ADD_NL:
|
|
p = "NALPHA+NL";
|
|
break;
|
|
case LOWER:
|
|
p = "LOWER";
|
|
break;
|
|
case LOWER + ADD_NL:
|
|
p = "LOWER+NL";
|
|
break;
|
|
case NLOWER:
|
|
p = "NLOWER";
|
|
break;
|
|
case NLOWER + ADD_NL:
|
|
p = "NLOWER+NL";
|
|
break;
|
|
case UPPER:
|
|
p = "UPPER";
|
|
break;
|
|
case UPPER + ADD_NL:
|
|
p = "UPPER+NL";
|
|
break;
|
|
case NUPPER:
|
|
p = "NUPPER";
|
|
break;
|
|
case NUPPER + ADD_NL:
|
|
p = "NUPPER+NL";
|
|
break;
|
|
case BRANCH:
|
|
p = "BRANCH";
|
|
break;
|
|
case EXACTLY:
|
|
p = "EXACTLY";
|
|
break;
|
|
case NOTHING:
|
|
p = "NOTHING";
|
|
break;
|
|
case BACK:
|
|
p = "BACK";
|
|
break;
|
|
case END:
|
|
p = "END";
|
|
break;
|
|
case MOPEN + 0:
|
|
p = "MATCH START";
|
|
break;
|
|
case MOPEN + 1:
|
|
case MOPEN + 2:
|
|
case MOPEN + 3:
|
|
case MOPEN + 4:
|
|
case MOPEN + 5:
|
|
case MOPEN + 6:
|
|
case MOPEN + 7:
|
|
case MOPEN + 8:
|
|
case MOPEN + 9:
|
|
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "MOPEN%d", OP(op) - MOPEN);
|
|
p = NULL;
|
|
break;
|
|
case MCLOSE + 0:
|
|
p = "MATCH END";
|
|
break;
|
|
case MCLOSE + 1:
|
|
case MCLOSE + 2:
|
|
case MCLOSE + 3:
|
|
case MCLOSE + 4:
|
|
case MCLOSE + 5:
|
|
case MCLOSE + 6:
|
|
case MCLOSE + 7:
|
|
case MCLOSE + 8:
|
|
case MCLOSE + 9:
|
|
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "MCLOSE%d", OP(op) - MCLOSE);
|
|
p = NULL;
|
|
break;
|
|
case BACKREF + 1:
|
|
case BACKREF + 2:
|
|
case BACKREF + 3:
|
|
case BACKREF + 4:
|
|
case BACKREF + 5:
|
|
case BACKREF + 6:
|
|
case BACKREF + 7:
|
|
case BACKREF + 8:
|
|
case BACKREF + 9:
|
|
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "BACKREF%d", OP(op) - BACKREF);
|
|
p = NULL;
|
|
break;
|
|
case NOPEN:
|
|
p = "NOPEN";
|
|
break;
|
|
case NCLOSE:
|
|
p = "NCLOSE";
|
|
break;
|
|
case ZOPEN + 1:
|
|
case ZOPEN + 2:
|
|
case ZOPEN + 3:
|
|
case ZOPEN + 4:
|
|
case ZOPEN + 5:
|
|
case ZOPEN + 6:
|
|
case ZOPEN + 7:
|
|
case ZOPEN + 8:
|
|
case ZOPEN + 9:
|
|
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "ZOPEN%d", OP(op) - ZOPEN);
|
|
p = NULL;
|
|
break;
|
|
case ZCLOSE + 1:
|
|
case ZCLOSE + 2:
|
|
case ZCLOSE + 3:
|
|
case ZCLOSE + 4:
|
|
case ZCLOSE + 5:
|
|
case ZCLOSE + 6:
|
|
case ZCLOSE + 7:
|
|
case ZCLOSE + 8:
|
|
case ZCLOSE + 9:
|
|
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "ZCLOSE%d", OP(op) - ZCLOSE);
|
|
p = NULL;
|
|
break;
|
|
case ZREF + 1:
|
|
case ZREF + 2:
|
|
case ZREF + 3:
|
|
case ZREF + 4:
|
|
case ZREF + 5:
|
|
case ZREF + 6:
|
|
case ZREF + 7:
|
|
case ZREF + 8:
|
|
case ZREF + 9:
|
|
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "ZREF%d", OP(op) - ZREF);
|
|
p = NULL;
|
|
break;
|
|
case STAR:
|
|
p = "STAR";
|
|
break;
|
|
case PLUS:
|
|
p = "PLUS";
|
|
break;
|
|
case NOMATCH:
|
|
p = "NOMATCH";
|
|
break;
|
|
case MATCH:
|
|
p = "MATCH";
|
|
break;
|
|
case BEHIND:
|
|
p = "BEHIND";
|
|
break;
|
|
case NOBEHIND:
|
|
p = "NOBEHIND";
|
|
break;
|
|
case SUBPAT:
|
|
p = "SUBPAT";
|
|
break;
|
|
case BRACE_LIMITS:
|
|
p = "BRACE_LIMITS";
|
|
break;
|
|
case BRACE_SIMPLE:
|
|
p = "BRACE_SIMPLE";
|
|
break;
|
|
case BRACE_COMPLEX + 0:
|
|
case BRACE_COMPLEX + 1:
|
|
case BRACE_COMPLEX + 2:
|
|
case BRACE_COMPLEX + 3:
|
|
case BRACE_COMPLEX + 4:
|
|
case BRACE_COMPLEX + 5:
|
|
case BRACE_COMPLEX + 6:
|
|
case BRACE_COMPLEX + 7:
|
|
case BRACE_COMPLEX + 8:
|
|
case BRACE_COMPLEX + 9:
|
|
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "BRACE_COMPLEX%d",
|
|
OP(op) - BRACE_COMPLEX);
|
|
p = NULL;
|
|
break;
|
|
case MULTIBYTECODE:
|
|
p = "MULTIBYTECODE";
|
|
break;
|
|
case NEWL:
|
|
p = "NEWL";
|
|
break;
|
|
default:
|
|
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "corrupt %d", OP(op));
|
|
p = NULL;
|
|
break;
|
|
}
|
|
if (p != NULL) {
|
|
STRCAT(buf, p);
|
|
}
|
|
return (uint8_t *)buf;
|
|
}
|
|
#endif // REGEXP_DEBUG
|
|
|
|
// }}}1
|
|
|
|
// regexp_nfa.c {{{1
|
|
// NFA regular expression implementation.
|
|
|
|
// Logging of NFA engine.
|
|
//
|
|
// The NFA engine can write four log files:
|
|
// - Error log: Contains NFA engine's fatal errors.
|
|
// - Dump log: Contains compiled NFA state machine's information.
|
|
// - Run log: Contains information of matching procedure.
|
|
// - Debug log: Contains detailed information of matching procedure. Can be
|
|
// disabled by undefining NFA_REGEXP_DEBUG_LOG.
|
|
// The first one can also be used without debug mode.
|
|
// The last three are enabled when compiled as debug mode and individually
|
|
// disabled by commenting them out.
|
|
// The log files can get quite big!
|
|
// To disable all of this when compiling Vim for debugging, undefine REGEXP_DEBUG in
|
|
// regexp.c
|
|
#ifdef REGEXP_DEBUG
|
|
# define NFA_REGEXP_ERROR_LOG "nfa_regexp_error.log"
|
|
# define NFA_REGEXP_DUMP_LOG "nfa_regexp_dump.log"
|
|
# define NFA_REGEXP_RUN_LOG "nfa_regexp_run.log"
|
|
# define NFA_REGEXP_DEBUG_LOG "nfa_regexp_debug.log"
|
|
#endif
|
|
|
|
// Added to NFA_ANY - NFA_NUPPER_IC to include a NL.
|
|
#define NFA_ADD_NL 31
|
|
|
|
enum {
|
|
NFA_SPLIT = -1024,
|
|
NFA_MATCH,
|
|
NFA_EMPTY, // matches 0-length
|
|
|
|
NFA_START_COLL, // [abc] start
|
|
NFA_END_COLL, // [abc] end
|
|
NFA_START_NEG_COLL, // [^abc] start
|
|
NFA_END_NEG_COLL, // [^abc] end (postfix only)
|
|
NFA_RANGE, // range of the two previous items
|
|
// (postfix only)
|
|
NFA_RANGE_MIN, // low end of a range
|
|
NFA_RANGE_MAX, // high end of a range
|
|
|
|
NFA_CONCAT, // concatenate two previous items (postfix
|
|
// only)
|
|
NFA_OR, // \| (postfix only)
|
|
NFA_STAR, // greedy * (postfix only)
|
|
NFA_STAR_NONGREEDY, // non-greedy * (postfix only)
|
|
NFA_QUEST, // greedy \? (postfix only)
|
|
NFA_QUEST_NONGREEDY, // non-greedy \? (postfix only)
|
|
|
|
NFA_BOL, // ^ Begin line
|
|
NFA_EOL, // $ End line
|
|
NFA_BOW, // \< Begin word
|
|
NFA_EOW, // \> End word
|
|
NFA_BOF, // \%^ Begin file
|
|
NFA_EOF, // \%$ End file
|
|
NFA_NEWL,
|
|
NFA_ZSTART, // Used for \zs
|
|
NFA_ZEND, // Used for \ze
|
|
NFA_NOPEN, // Start of subexpression marked with \%(
|
|
NFA_NCLOSE, // End of subexpr. marked with \%( ... \)
|
|
NFA_START_INVISIBLE,
|
|
NFA_START_INVISIBLE_FIRST,
|
|
NFA_START_INVISIBLE_NEG,
|
|
NFA_START_INVISIBLE_NEG_FIRST,
|
|
NFA_START_INVISIBLE_BEFORE,
|
|
NFA_START_INVISIBLE_BEFORE_FIRST,
|
|
NFA_START_INVISIBLE_BEFORE_NEG,
|
|
NFA_START_INVISIBLE_BEFORE_NEG_FIRST,
|
|
NFA_START_PATTERN,
|
|
NFA_END_INVISIBLE,
|
|
NFA_END_INVISIBLE_NEG,
|
|
NFA_END_PATTERN,
|
|
NFA_COMPOSING, // Next nodes in NFA are part of the
|
|
// composing multibyte char
|
|
NFA_END_COMPOSING, // End of a composing char in the NFA
|
|
NFA_ANY_COMPOSING, // \%C: Any composing characters.
|
|
NFA_OPT_CHARS, // \%[abc]
|
|
|
|
// The following are used only in the postfix form, not in the NFA
|
|
NFA_PREV_ATOM_NO_WIDTH, // Used for \@=
|
|
NFA_PREV_ATOM_NO_WIDTH_NEG, // Used for \@!
|
|
NFA_PREV_ATOM_JUST_BEFORE, // Used for \@<=
|
|
NFA_PREV_ATOM_JUST_BEFORE_NEG, // Used for \@<!
|
|
NFA_PREV_ATOM_LIKE_PATTERN, // Used for \@>
|
|
|
|
NFA_BACKREF1, // \1
|
|
NFA_BACKREF2, // \2
|
|
NFA_BACKREF3, // \3
|
|
NFA_BACKREF4, // \4
|
|
NFA_BACKREF5, // \5
|
|
NFA_BACKREF6, // \6
|
|
NFA_BACKREF7, // \7
|
|
NFA_BACKREF8, // \8
|
|
NFA_BACKREF9, // \9
|
|
NFA_ZREF1, // \z1
|
|
NFA_ZREF2, // \z2
|
|
NFA_ZREF3, // \z3
|
|
NFA_ZREF4, // \z4
|
|
NFA_ZREF5, // \z5
|
|
NFA_ZREF6, // \z6
|
|
NFA_ZREF7, // \z7
|
|
NFA_ZREF8, // \z8
|
|
NFA_ZREF9, // \z9
|
|
NFA_SKIP, // Skip characters
|
|
|
|
NFA_MOPEN,
|
|
NFA_MOPEN1,
|
|
NFA_MOPEN2,
|
|
NFA_MOPEN3,
|
|
NFA_MOPEN4,
|
|
NFA_MOPEN5,
|
|
NFA_MOPEN6,
|
|
NFA_MOPEN7,
|
|
NFA_MOPEN8,
|
|
NFA_MOPEN9,
|
|
|
|
NFA_MCLOSE,
|
|
NFA_MCLOSE1,
|
|
NFA_MCLOSE2,
|
|
NFA_MCLOSE3,
|
|
NFA_MCLOSE4,
|
|
NFA_MCLOSE5,
|
|
NFA_MCLOSE6,
|
|
NFA_MCLOSE7,
|
|
NFA_MCLOSE8,
|
|
NFA_MCLOSE9,
|
|
|
|
NFA_ZOPEN,
|
|
NFA_ZOPEN1,
|
|
NFA_ZOPEN2,
|
|
NFA_ZOPEN3,
|
|
NFA_ZOPEN4,
|
|
NFA_ZOPEN5,
|
|
NFA_ZOPEN6,
|
|
NFA_ZOPEN7,
|
|
NFA_ZOPEN8,
|
|
NFA_ZOPEN9,
|
|
|
|
NFA_ZCLOSE,
|
|
NFA_ZCLOSE1,
|
|
NFA_ZCLOSE2,
|
|
NFA_ZCLOSE3,
|
|
NFA_ZCLOSE4,
|
|
NFA_ZCLOSE5,
|
|
NFA_ZCLOSE6,
|
|
NFA_ZCLOSE7,
|
|
NFA_ZCLOSE8,
|
|
NFA_ZCLOSE9,
|
|
|
|
// NFA_FIRST_NL
|
|
NFA_ANY, // Match any one character.
|
|
NFA_IDENT, // Match identifier char
|
|
NFA_SIDENT, // Match identifier char but no digit
|
|
NFA_KWORD, // Match keyword char
|
|
NFA_SKWORD, // Match word char but no digit
|
|
NFA_FNAME, // Match file name char
|
|
NFA_SFNAME, // Match file name char but no digit
|
|
NFA_PRINT, // Match printable char
|
|
NFA_SPRINT, // Match printable char but no digit
|
|
NFA_WHITE, // Match whitespace char
|
|
NFA_NWHITE, // Match non-whitespace char
|
|
NFA_DIGIT, // Match digit char
|
|
NFA_NDIGIT, // Match non-digit char
|
|
NFA_HEX, // Match hex char
|
|
NFA_NHEX, // Match non-hex char
|
|
NFA_OCTAL, // Match octal char
|
|
NFA_NOCTAL, // Match non-octal char
|
|
NFA_WORD, // Match word char
|
|
NFA_NWORD, // Match non-word char
|
|
NFA_HEAD, // Match head char
|
|
NFA_NHEAD, // Match non-head char
|
|
NFA_ALPHA, // Match alpha char
|
|
NFA_NALPHA, // Match non-alpha char
|
|
NFA_LOWER, // Match lowercase char
|
|
NFA_NLOWER, // Match non-lowercase char
|
|
NFA_UPPER, // Match uppercase char
|
|
NFA_NUPPER, // Match non-uppercase char
|
|
NFA_LOWER_IC, // Match [a-z]
|
|
NFA_NLOWER_IC, // Match [^a-z]
|
|
NFA_UPPER_IC, // Match [A-Z]
|
|
NFA_NUPPER_IC, // Match [^A-Z]
|
|
|
|
NFA_FIRST_NL = NFA_ANY + NFA_ADD_NL,
|
|
NFA_LAST_NL = NFA_NUPPER_IC + NFA_ADD_NL,
|
|
|
|
NFA_CURSOR, // Match cursor pos
|
|
NFA_LNUM, // Match line number
|
|
NFA_LNUM_GT, // Match > line number
|
|
NFA_LNUM_LT, // Match < line number
|
|
NFA_COL, // Match cursor column
|
|
NFA_COL_GT, // Match > cursor column
|
|
NFA_COL_LT, // Match < cursor column
|
|
NFA_VCOL, // Match cursor virtual column
|
|
NFA_VCOL_GT, // Match > cursor virtual column
|
|
NFA_VCOL_LT, // Match < cursor virtual column
|
|
NFA_MARK, // Match mark
|
|
NFA_MARK_GT, // Match > mark
|
|
NFA_MARK_LT, // Match < mark
|
|
NFA_VISUAL, // Match Visual area
|
|
|
|
// Character classes [:alnum:] etc
|
|
NFA_CLASS_ALNUM,
|
|
NFA_CLASS_ALPHA,
|
|
NFA_CLASS_BLANK,
|
|
NFA_CLASS_CNTRL,
|
|
NFA_CLASS_DIGIT,
|
|
NFA_CLASS_GRAPH,
|
|
NFA_CLASS_LOWER,
|
|
NFA_CLASS_PRINT,
|
|
NFA_CLASS_PUNCT,
|
|
NFA_CLASS_SPACE,
|
|
NFA_CLASS_UPPER,
|
|
NFA_CLASS_XDIGIT,
|
|
NFA_CLASS_TAB,
|
|
NFA_CLASS_RETURN,
|
|
NFA_CLASS_BACKSPACE,
|
|
NFA_CLASS_ESCAPE,
|
|
NFA_CLASS_IDENT,
|
|
NFA_CLASS_KEYWORD,
|
|
NFA_CLASS_FNAME,
|
|
};
|
|
|
|
// Keep in sync with classchars.
|
|
static int nfa_classcodes[] = {
|
|
NFA_ANY, NFA_IDENT, NFA_SIDENT, NFA_KWORD, NFA_SKWORD,
|
|
NFA_FNAME, NFA_SFNAME, NFA_PRINT, NFA_SPRINT,
|
|
NFA_WHITE, NFA_NWHITE, NFA_DIGIT, NFA_NDIGIT,
|
|
NFA_HEX, NFA_NHEX, NFA_OCTAL, NFA_NOCTAL,
|
|
NFA_WORD, NFA_NWORD, NFA_HEAD, NFA_NHEAD,
|
|
NFA_ALPHA, NFA_NALPHA, NFA_LOWER, NFA_NLOWER,
|
|
NFA_UPPER, NFA_NUPPER
|
|
};
|
|
|
|
static const char e_nul_found[] = N_("E865: (NFA) Regexp end encountered prematurely");
|
|
static const char e_misplaced[] = N_("E866: (NFA regexp) Misplaced %c");
|
|
static const char e_ill_char_class[] = N_("E877: (NFA regexp) Invalid character class: %" PRId64);
|
|
static const char e_value_too_large[] = N_("E951: \\% value too large");
|
|
|
|
// Variables only used in nfa_regcomp() and descendants.
|
|
static int nfa_re_flags; ///< re_flags passed to nfa_regcomp().
|
|
static int *post_start; ///< holds the postfix form of r.e.
|
|
static int *post_end;
|
|
static int *post_ptr;
|
|
|
|
// Set when the pattern should use the NFA engine.
|
|
// E.g. [[:upper:]] only allows 8bit characters for BT engine,
|
|
// while NFA engine handles multibyte characters correctly.
|
|
static bool wants_nfa;
|
|
|
|
static int nstate; ///< Number of states in the NFA. Also used when executing.
|
|
static int istate; ///< Index in the state vector, used in alloc_state()
|
|
|
|
// If not NULL match must end at this position
|
|
static save_se_T *nfa_endp = NULL;
|
|
|
|
// 0 for first call to nfa_regmatch(), 1 for recursive call.
|
|
static int nfa_ll_index = 0;
|
|
|
|
// Helper functions used when doing re2post() ... regatom() parsing
|
|
#define EMIT(c) \
|
|
do { \
|
|
if (post_ptr >= post_end) { \
|
|
realloc_post_list(); \
|
|
} \
|
|
*post_ptr++ = c; \
|
|
} while (0)
|
|
|
|
/// Initialize internal variables before NFA compilation.
|
|
///
|
|
/// @param re_flags @see vim_regcomp()
|
|
static void nfa_regcomp_start(uint8_t *expr, int re_flags)
|
|
{
|
|
size_t postfix_size;
|
|
size_t nstate_max;
|
|
|
|
nstate = 0;
|
|
istate = 0;
|
|
// A reasonable estimation for maximum size
|
|
nstate_max = (strlen((char *)expr) + 1) * 25;
|
|
|
|
// Some items blow up in size, such as [A-z]. Add more space for that.
|
|
// When it is still not enough realloc_post_list() will be used.
|
|
nstate_max += 1000;
|
|
|
|
// Size for postfix representation of expr.
|
|
postfix_size = sizeof(int) * nstate_max;
|
|
|
|
post_start = (int *)xmalloc(postfix_size);
|
|
post_ptr = post_start;
|
|
post_end = post_start + nstate_max;
|
|
wants_nfa = false;
|
|
rex.nfa_has_zend = false;
|
|
rex.nfa_has_backref = false;
|
|
|
|
// shared with BT engine
|
|
regcomp_start(expr, re_flags);
|
|
}
|
|
|
|
// Figure out if the NFA state list starts with an anchor, must match at start
|
|
// of the line.
|
|
static int nfa_get_reganch(nfa_state_T *start, int depth)
|
|
{
|
|
nfa_state_T *p = start;
|
|
|
|
if (depth > 4) {
|
|
return 0;
|
|
}
|
|
|
|
while (p != NULL) {
|
|
switch (p->c) {
|
|
case NFA_BOL:
|
|
case NFA_BOF:
|
|
return 1; // yes!
|
|
|
|
case NFA_ZSTART:
|
|
case NFA_ZEND:
|
|
case NFA_CURSOR:
|
|
case NFA_VISUAL:
|
|
|
|
case NFA_MOPEN:
|
|
case NFA_MOPEN1:
|
|
case NFA_MOPEN2:
|
|
case NFA_MOPEN3:
|
|
case NFA_MOPEN4:
|
|
case NFA_MOPEN5:
|
|
case NFA_MOPEN6:
|
|
case NFA_MOPEN7:
|
|
case NFA_MOPEN8:
|
|
case NFA_MOPEN9:
|
|
case NFA_NOPEN:
|
|
case NFA_ZOPEN:
|
|
case NFA_ZOPEN1:
|
|
case NFA_ZOPEN2:
|
|
case NFA_ZOPEN3:
|
|
case NFA_ZOPEN4:
|
|
case NFA_ZOPEN5:
|
|
case NFA_ZOPEN6:
|
|
case NFA_ZOPEN7:
|
|
case NFA_ZOPEN8:
|
|
case NFA_ZOPEN9:
|
|
p = p->out;
|
|
break;
|
|
|
|
case NFA_SPLIT:
|
|
return nfa_get_reganch(p->out, depth + 1)
|
|
&& nfa_get_reganch(p->out1, depth + 1);
|
|
|
|
default:
|
|
return 0; // noooo
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Figure out if the NFA state list starts with a character which must match
|
|
// at start of the match.
|
|
static int nfa_get_regstart(nfa_state_T *start, int depth)
|
|
{
|
|
nfa_state_T *p = start;
|
|
|
|
if (depth > 4) {
|
|
return 0;
|
|
}
|
|
|
|
while (p != NULL) {
|
|
switch (p->c) {
|
|
// all kinds of zero-width matches
|
|
case NFA_BOL:
|
|
case NFA_BOF:
|
|
case NFA_BOW:
|
|
case NFA_EOW:
|
|
case NFA_ZSTART:
|
|
case NFA_ZEND:
|
|
case NFA_CURSOR:
|
|
case NFA_VISUAL:
|
|
case NFA_LNUM:
|
|
case NFA_LNUM_GT:
|
|
case NFA_LNUM_LT:
|
|
case NFA_COL:
|
|
case NFA_COL_GT:
|
|
case NFA_COL_LT:
|
|
case NFA_VCOL:
|
|
case NFA_VCOL_GT:
|
|
case NFA_VCOL_LT:
|
|
case NFA_MARK:
|
|
case NFA_MARK_GT:
|
|
case NFA_MARK_LT:
|
|
|
|
case NFA_MOPEN:
|
|
case NFA_MOPEN1:
|
|
case NFA_MOPEN2:
|
|
case NFA_MOPEN3:
|
|
case NFA_MOPEN4:
|
|
case NFA_MOPEN5:
|
|
case NFA_MOPEN6:
|
|
case NFA_MOPEN7:
|
|
case NFA_MOPEN8:
|
|
case NFA_MOPEN9:
|
|
case NFA_NOPEN:
|
|
case NFA_ZOPEN:
|
|
case NFA_ZOPEN1:
|
|
case NFA_ZOPEN2:
|
|
case NFA_ZOPEN3:
|
|
case NFA_ZOPEN4:
|
|
case NFA_ZOPEN5:
|
|
case NFA_ZOPEN6:
|
|
case NFA_ZOPEN7:
|
|
case NFA_ZOPEN8:
|
|
case NFA_ZOPEN9:
|
|
p = p->out;
|
|
break;
|
|
|
|
case NFA_SPLIT: {
|
|
int c1 = nfa_get_regstart(p->out, depth + 1);
|
|
int c2 = nfa_get_regstart(p->out1, depth + 1);
|
|
|
|
if (c1 == c2) {
|
|
return c1; // yes!
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
default:
|
|
if (p->c > 0) {
|
|
return p->c; // yes!
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Figure out if the NFA state list contains just literal text and nothing
|
|
// else. If so return a string in allocated memory with what must match after
|
|
// regstart. Otherwise return NULL.
|
|
static uint8_t *nfa_get_match_text(nfa_state_T *start)
|
|
{
|
|
nfa_state_T *p = start;
|
|
int len = 0;
|
|
uint8_t *ret;
|
|
uint8_t *s;
|
|
|
|
if (p->c != NFA_MOPEN) {
|
|
return NULL; // just in case
|
|
}
|
|
p = p->out;
|
|
while (p->c > 0) {
|
|
len += utf_char2len(p->c);
|
|
p = p->out;
|
|
}
|
|
if (p->c != NFA_MCLOSE || p->out->c != NFA_MATCH) {
|
|
return NULL;
|
|
}
|
|
|
|
ret = xmalloc((size_t)len);
|
|
p = start->out->out; // skip first char, it goes into regstart
|
|
s = ret;
|
|
while (p->c > 0) {
|
|
s += utf_char2bytes(p->c, (char *)s);
|
|
p = p->out;
|
|
}
|
|
*s = NUL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Allocate more space for post_start. Called when
|
|
// running above the estimated number of states.
|
|
static void realloc_post_list(void)
|
|
{
|
|
// For weird patterns the number of states can be very high. Increasing by
|
|
// 50% seems a reasonable compromise between memory use and speed.
|
|
const size_t new_max = (size_t)(post_end - post_start) * 3 / 2;
|
|
int *new_start = xrealloc(post_start, new_max * sizeof(int));
|
|
post_ptr = new_start + (post_ptr - post_start);
|
|
post_end = new_start + new_max;
|
|
post_start = new_start;
|
|
}
|
|
|
|
// Search between "start" and "end" and try to recognize a
|
|
// character class in expanded form. For example [0-9].
|
|
// On success, return the id the character class to be emitted.
|
|
// On failure, return 0 (=FAIL)
|
|
// Start points to the first char of the range, while end should point
|
|
// to the closing brace.
|
|
// Keep in mind that 'ignorecase' applies at execution time, thus [a-z] may
|
|
// need to be interpreted as [a-zA-Z].
|
|
static int nfa_recognize_char_class(uint8_t *start, const uint8_t *end, int extra_newl)
|
|
{
|
|
#define CLASS_not 0x80
|
|
#define CLASS_af 0x40
|
|
#define CLASS_AF 0x20
|
|
#define CLASS_az 0x10
|
|
#define CLASS_AZ 0x08
|
|
#define CLASS_o7 0x04
|
|
#define CLASS_o9 0x02
|
|
#define CLASS_underscore 0x01
|
|
|
|
uint8_t *p;
|
|
int config = 0;
|
|
|
|
bool newl = extra_newl == true;
|
|
|
|
if (*end != ']') {
|
|
return FAIL;
|
|
}
|
|
p = start;
|
|
if (*p == '^') {
|
|
config |= CLASS_not;
|
|
p++;
|
|
}
|
|
|
|
while (p < end) {
|
|
if (p + 2 < end && *(p + 1) == '-') {
|
|
switch (*p) {
|
|
case '0':
|
|
if (*(p + 2) == '9') {
|
|
config |= CLASS_o9;
|
|
break;
|
|
} else if (*(p + 2) == '7') {
|
|
config |= CLASS_o7;
|
|
break;
|
|
}
|
|
return FAIL;
|
|
case 'a':
|
|
if (*(p + 2) == 'z') {
|
|
config |= CLASS_az;
|
|
break;
|
|
} else if (*(p + 2) == 'f') {
|
|
config |= CLASS_af;
|
|
break;
|
|
}
|
|
return FAIL;
|
|
case 'A':
|
|
if (*(p + 2) == 'Z') {
|
|
config |= CLASS_AZ;
|
|
break;
|
|
} else if (*(p + 2) == 'F') {
|
|
config |= CLASS_AF;
|
|
break;
|
|
}
|
|
return FAIL;
|
|
default:
|
|
return FAIL;
|
|
}
|
|
p += 3;
|
|
} else if (p + 1 < end && *p == '\\' && *(p + 1) == 'n') {
|
|
newl = true;
|
|
p += 2;
|
|
} else if (*p == '_') {
|
|
config |= CLASS_underscore;
|
|
p++;
|
|
} else if (*p == '\n') {
|
|
newl = true;
|
|
p++;
|
|
} else {
|
|
return FAIL;
|
|
}
|
|
} // while (p < end)
|
|
|
|
if (p != end) {
|
|
return FAIL;
|
|
}
|
|
|
|
if (newl == true) {
|
|
extra_newl = NFA_ADD_NL;
|
|
}
|
|
|
|
switch (config) {
|
|
case CLASS_o9:
|
|
return extra_newl + NFA_DIGIT;
|
|
case CLASS_not | CLASS_o9:
|
|
return extra_newl + NFA_NDIGIT;
|
|
case CLASS_af | CLASS_AF | CLASS_o9:
|
|
return extra_newl + NFA_HEX;
|
|
case CLASS_not | CLASS_af | CLASS_AF | CLASS_o9:
|
|
return extra_newl + NFA_NHEX;
|
|
case CLASS_o7:
|
|
return extra_newl + NFA_OCTAL;
|
|
case CLASS_not | CLASS_o7:
|
|
return extra_newl + NFA_NOCTAL;
|
|
case CLASS_az | CLASS_AZ | CLASS_o9 | CLASS_underscore:
|
|
return extra_newl + NFA_WORD;
|
|
case CLASS_not | CLASS_az | CLASS_AZ | CLASS_o9 | CLASS_underscore:
|
|
return extra_newl + NFA_NWORD;
|
|
case CLASS_az | CLASS_AZ | CLASS_underscore:
|
|
return extra_newl + NFA_HEAD;
|
|
case CLASS_not | CLASS_az | CLASS_AZ | CLASS_underscore:
|
|
return extra_newl + NFA_NHEAD;
|
|
case CLASS_az | CLASS_AZ:
|
|
return extra_newl + NFA_ALPHA;
|
|
case CLASS_not | CLASS_az | CLASS_AZ:
|
|
return extra_newl + NFA_NALPHA;
|
|
case CLASS_az:
|
|
return extra_newl + NFA_LOWER_IC;
|
|
case CLASS_not | CLASS_az:
|
|
return extra_newl + NFA_NLOWER_IC;
|
|
case CLASS_AZ:
|
|
return extra_newl + NFA_UPPER_IC;
|
|
case CLASS_not | CLASS_AZ:
|
|
return extra_newl + NFA_NUPPER_IC;
|
|
}
|
|
return FAIL;
|
|
}
|
|
|
|
// Produce the bytes for equivalence class "c".
|
|
// Currently only handles latin1, latin9 and utf-8.
|
|
// Emits bytes in postfix notation: 'a,b,NFA_OR,c,NFA_OR' is
|
|
// equivalent to 'a OR b OR c'
|
|
//
|
|
// NOTE! When changing this function, also update reg_equi_class()
|
|
static void nfa_emit_equi_class(int c)
|
|
{
|
|
#define EMIT2(c) EMIT(c); EMIT(NFA_CONCAT);
|
|
|
|
{
|
|
#define A_grave 0xc0
|
|
#define A_acute 0xc1
|
|
#define A_circumflex 0xc2
|
|
#define A_virguilla 0xc3
|
|
#define A_diaeresis 0xc4
|
|
#define A_ring 0xc5
|
|
#define C_cedilla 0xc7
|
|
#define E_grave 0xc8
|
|
#define E_acute 0xc9
|
|
#define E_circumflex 0xca
|
|
#define E_diaeresis 0xcb
|
|
#define I_grave 0xcc
|
|
#define I_acute 0xcd
|
|
#define I_circumflex 0xce
|
|
#define I_diaeresis 0xcf
|
|
#define N_virguilla 0xd1
|
|
#define O_grave 0xd2
|
|
#define O_acute 0xd3
|
|
#define O_circumflex 0xd4
|
|
#define O_virguilla 0xd5
|
|
#define O_diaeresis 0xd6
|
|
#define O_slash 0xd8
|
|
#define U_grave 0xd9
|
|
#define U_acute 0xda
|
|
#define U_circumflex 0xdb
|
|
#define U_diaeresis 0xdc
|
|
#define Y_acute 0xdd
|
|
#define a_grave 0xe0
|
|
#define a_acute 0xe1
|
|
#define a_circumflex 0xe2
|
|
#define a_virguilla 0xe3
|
|
#define a_diaeresis 0xe4
|
|
#define a_ring 0xe5
|
|
#define c_cedilla 0xe7
|
|
#define e_grave 0xe8
|
|
#define e_acute 0xe9
|
|
#define e_circumflex 0xea
|
|
#define e_diaeresis 0xeb
|
|
#define i_grave 0xec
|
|
#define i_acute 0xed
|
|
#define i_circumflex 0xee
|
|
#define i_diaeresis 0xef
|
|
#define n_virguilla 0xf1
|
|
#define o_grave 0xf2
|
|
#define o_acute 0xf3
|
|
#define o_circumflex 0xf4
|
|
#define o_virguilla 0xf5
|
|
#define o_diaeresis 0xf6
|
|
#define o_slash 0xf8
|
|
#define u_grave 0xf9
|
|
#define u_acute 0xfa
|
|
#define u_circumflex 0xfb
|
|
#define u_diaeresis 0xfc
|
|
#define y_acute 0xfd
|
|
#define y_diaeresis 0xff
|
|
switch (c) {
|
|
case 'A':
|
|
case A_grave:
|
|
case A_acute:
|
|
case A_circumflex:
|
|
case A_virguilla:
|
|
case A_diaeresis:
|
|
case A_ring:
|
|
case 0x100:
|
|
case 0x102:
|
|
case 0x104:
|
|
case 0x1cd:
|
|
case 0x1de:
|
|
case 0x1e0:
|
|
case 0x1fa:
|
|
case 0x200:
|
|
case 0x202:
|
|
case 0x226:
|
|
case 0x23a:
|
|
case 0x1e00:
|
|
case 0x1ea0:
|
|
case 0x1ea2:
|
|
case 0x1ea4:
|
|
case 0x1ea6:
|
|
case 0x1ea8:
|
|
case 0x1eaa:
|
|
case 0x1eac:
|
|
case 0x1eae:
|
|
case 0x1eb0:
|
|
case 0x1eb2:
|
|
case 0x1eb4:
|
|
case 0x1eb6:
|
|
EMIT2('A') EMIT2(A_grave) EMIT2(A_acute)
|
|
EMIT2(A_circumflex) EMIT2(A_virguilla)
|
|
EMIT2(A_diaeresis) EMIT2(A_ring)
|
|
EMIT2(0x100) EMIT2(0x102) EMIT2(0x104)
|
|
EMIT2(0x1cd) EMIT2(0x1de) EMIT2(0x1e0)
|
|
EMIT2(0x1fa) EMIT2(0x200) EMIT2(0x202)
|
|
EMIT2(0x226) EMIT2(0x23a) EMIT2(0x1e00)
|
|
EMIT2(0x1ea0) EMIT2(0x1ea2) EMIT2(0x1ea4)
|
|
EMIT2(0x1ea6) EMIT2(0x1ea8) EMIT2(0x1eaa)
|
|
EMIT2(0x1eac) EMIT2(0x1eae) EMIT2(0x1eb0)
|
|
EMIT2(0x1eb2) EMIT2(0x1eb6) EMIT2(0x1eb4)
|
|
return;
|
|
|
|
case 'B':
|
|
case 0x181:
|
|
case 0x243:
|
|
case 0x1e02:
|
|
case 0x1e04:
|
|
case 0x1e06:
|
|
EMIT2('B')
|
|
EMIT2(0x181) EMIT2(0x243) EMIT2(0x1e02)
|
|
EMIT2(0x1e04) EMIT2(0x1e06)
|
|
return;
|
|
|
|
case 'C':
|
|
case C_cedilla:
|
|
case 0x106:
|
|
case 0x108:
|
|
case 0x10a:
|
|
case 0x10c:
|
|
case 0x187:
|
|
case 0x23b:
|
|
case 0x1e08:
|
|
case 0xa792:
|
|
EMIT2('C') EMIT2(C_cedilla)
|
|
EMIT2(0x106) EMIT2(0x108) EMIT2(0x10a)
|
|
EMIT2(0x10c) EMIT2(0x187) EMIT2(0x23b)
|
|
EMIT2(0x1e08) EMIT2(0xa792)
|
|
return;
|
|
|
|
case 'D':
|
|
case 0x10e:
|
|
case 0x110:
|
|
case 0x18a:
|
|
case 0x1e0a:
|
|
case 0x1e0c:
|
|
case 0x1e0e:
|
|
case 0x1e10:
|
|
case 0x1e12:
|
|
EMIT2('D') EMIT2(0x10e) EMIT2(0x110) EMIT2(0x18a)
|
|
EMIT2(0x1e0a) EMIT2(0x1e0c) EMIT2(0x1e0e)
|
|
EMIT2(0x1e10) EMIT2(0x1e12)
|
|
return;
|
|
|
|
case 'E':
|
|
case E_grave:
|
|
case E_acute:
|
|
case E_circumflex:
|
|
case E_diaeresis:
|
|
case 0x112:
|
|
case 0x114:
|
|
case 0x116:
|
|
case 0x118:
|
|
case 0x11a:
|
|
case 0x204:
|
|
case 0x206:
|
|
case 0x228:
|
|
case 0x246:
|
|
case 0x1e14:
|
|
case 0x1e16:
|
|
case 0x1e18:
|
|
case 0x1e1a:
|
|
case 0x1e1c:
|
|
case 0x1eb8:
|
|
case 0x1eba:
|
|
case 0x1ebc:
|
|
case 0x1ebe:
|
|
case 0x1ec0:
|
|
case 0x1ec2:
|
|
case 0x1ec4:
|
|
case 0x1ec6:
|
|
EMIT2('E') EMIT2(E_grave) EMIT2(E_acute)
|
|
EMIT2(E_circumflex) EMIT2(E_diaeresis)
|
|
EMIT2(0x112) EMIT2(0x114) EMIT2(0x116)
|
|
EMIT2(0x118) EMIT2(0x11a) EMIT2(0x204)
|
|
EMIT2(0x206) EMIT2(0x228) EMIT2(0x246)
|
|
EMIT2(0x1e14) EMIT2(0x1e16) EMIT2(0x1e18)
|
|
EMIT2(0x1e1a) EMIT2(0x1e1c) EMIT2(0x1eb8)
|
|
EMIT2(0x1eba) EMIT2(0x1ebc) EMIT2(0x1ebe)
|
|
EMIT2(0x1ec0) EMIT2(0x1ec2) EMIT2(0x1ec4)
|
|
EMIT2(0x1ec6)
|
|
return;
|
|
|
|
case 'F':
|
|
case 0x191:
|
|
case 0x1e1e:
|
|
case 0xa798:
|
|
EMIT2('F') EMIT2(0x191) EMIT2(0x1e1e) EMIT2(0xa798)
|
|
return;
|
|
|
|
case 'G':
|
|
case 0x11c:
|
|
case 0x11e:
|
|
case 0x120:
|
|
case 0x122:
|
|
case 0x193:
|
|
case 0x1e4:
|
|
case 0x1e6:
|
|
case 0x1f4:
|
|
case 0x1e20:
|
|
case 0xa7a0:
|
|
EMIT2('G') EMIT2(0x11c) EMIT2(0x11e) EMIT2(0x120)
|
|
EMIT2(0x122) EMIT2(0x193) EMIT2(0x1e4)
|
|
EMIT2(0x1e6) EMIT2(0x1f4) EMIT2(0x1e20)
|
|
EMIT2(0xa7a0)
|
|
return;
|
|
|
|
case 'H':
|
|
case 0x124:
|
|
case 0x126:
|
|
case 0x21e:
|
|
case 0x1e22:
|
|
case 0x1e24:
|
|
case 0x1e26:
|
|
case 0x1e28:
|
|
case 0x1e2a:
|
|
case 0x2c67:
|
|
EMIT2('H') EMIT2(0x124) EMIT2(0x126) EMIT2(0x21e)
|
|
EMIT2(0x1e22) EMIT2(0x1e24) EMIT2(0x1e26)
|
|
EMIT2(0x1e28) EMIT2(0x1e2a) EMIT2(0x2c67)
|
|
return;
|
|
|
|
case 'I':
|
|
case I_grave:
|
|
case I_acute:
|
|
case I_circumflex:
|
|
case I_diaeresis:
|
|
case 0x128:
|
|
case 0x12a:
|
|
case 0x12c:
|
|
case 0x12e:
|
|
case 0x130:
|
|
case 0x197:
|
|
case 0x1cf:
|
|
case 0x208:
|
|
case 0x20a:
|
|
case 0x1e2c:
|
|
case 0x1e2e:
|
|
case 0x1ec8:
|
|
case 0x1eca:
|
|
EMIT2('I') EMIT2(I_grave) EMIT2(I_acute)
|
|
EMIT2(I_circumflex) EMIT2(I_diaeresis)
|
|
EMIT2(0x128) EMIT2(0x12a) EMIT2(0x12c)
|
|
EMIT2(0x12e) EMIT2(0x130) EMIT2(0x197)
|
|
EMIT2(0x1cf) EMIT2(0x208) EMIT2(0x20a)
|
|
EMIT2(0x1e2c) EMIT2(0x1e2e) EMIT2(0x1ec8)
|
|
EMIT2(0x1eca)
|
|
return;
|
|
|
|
case 'J':
|
|
case 0x134:
|
|
case 0x248:
|
|
EMIT2('J') EMIT2(0x134) EMIT2(0x248)
|
|
return;
|
|
|
|
case 'K':
|
|
case 0x136:
|
|
case 0x198:
|
|
case 0x1e8:
|
|
case 0x1e30:
|
|
case 0x1e32:
|
|
case 0x1e34:
|
|
case 0x2c69:
|
|
case 0xa740:
|
|
EMIT2('K') EMIT2(0x136) EMIT2(0x198) EMIT2(0x1e8)
|
|
EMIT2(0x1e30) EMIT2(0x1e32) EMIT2(0x1e34)
|
|
EMIT2(0x2c69) EMIT2(0xa740)
|
|
return;
|
|
|
|
case 'L':
|
|
case 0x139:
|
|
case 0x13b:
|
|
case 0x13d:
|
|
case 0x13f:
|
|
case 0x141:
|
|
case 0x23d:
|
|
case 0x1e36:
|
|
case 0x1e38:
|
|
case 0x1e3a:
|
|
case 0x1e3c:
|
|
case 0x2c60:
|
|
EMIT2('L') EMIT2(0x139) EMIT2(0x13b)
|
|
EMIT2(0x13d) EMIT2(0x13f) EMIT2(0x141)
|
|
EMIT2(0x23d) EMIT2(0x1e36) EMIT2(0x1e38)
|
|
EMIT2(0x1e3a) EMIT2(0x1e3c) EMIT2(0x2c60)
|
|
return;
|
|
|
|
case 'M':
|
|
case 0x1e3e:
|
|
case 0x1e40:
|
|
case 0x1e42:
|
|
EMIT2('M') EMIT2(0x1e3e) EMIT2(0x1e40)
|
|
EMIT2(0x1e42)
|
|
return;
|
|
|
|
case 'N':
|
|
case N_virguilla:
|
|
case 0x143:
|
|
case 0x145:
|
|
case 0x147:
|
|
case 0x1f8:
|
|
case 0x1e44:
|
|
case 0x1e46:
|
|
case 0x1e48:
|
|
case 0x1e4a:
|
|
case 0xa7a4:
|
|
EMIT2('N') EMIT2(N_virguilla)
|
|
EMIT2(0x143) EMIT2(0x145) EMIT2(0x147)
|
|
EMIT2(0x1f8) EMIT2(0x1e44) EMIT2(0x1e46)
|
|
EMIT2(0x1e48) EMIT2(0x1e4a) EMIT2(0xa7a4)
|
|
return;
|
|
|
|
case 'O':
|
|
case O_grave:
|
|
case O_acute:
|
|
case O_circumflex:
|
|
case O_virguilla:
|
|
case O_diaeresis:
|
|
case O_slash:
|
|
case 0x14c:
|
|
case 0x14e:
|
|
case 0x150:
|
|
case 0x19f:
|
|
case 0x1a0:
|
|
case 0x1d1:
|
|
case 0x1ea:
|
|
case 0x1ec:
|
|
case 0x1fe:
|
|
case 0x20c:
|
|
case 0x20e:
|
|
case 0x22a:
|
|
case 0x22c:
|
|
case 0x22e:
|
|
case 0x230:
|
|
case 0x1e4c:
|
|
case 0x1e4e:
|
|
case 0x1e50:
|
|
case 0x1e52:
|
|
case 0x1ecc:
|
|
case 0x1ece:
|
|
case 0x1ed0:
|
|
case 0x1ed2:
|
|
case 0x1ed4:
|
|
case 0x1ed6:
|
|
case 0x1ed8:
|
|
case 0x1eda:
|
|
case 0x1edc:
|
|
case 0x1ede:
|
|
case 0x1ee0:
|
|
case 0x1ee2:
|
|
EMIT2('O') EMIT2(O_grave) EMIT2(O_acute)
|
|
EMIT2(O_circumflex) EMIT2(O_virguilla)
|
|
EMIT2(O_diaeresis) EMIT2(O_slash)
|
|
EMIT2(0x14c) EMIT2(0x14e) EMIT2(0x150)
|
|
EMIT2(0x19f) EMIT2(0x1a0) EMIT2(0x1d1)
|
|
EMIT2(0x1ea) EMIT2(0x1ec) EMIT2(0x1fe)
|
|
EMIT2(0x20c) EMIT2(0x20e) EMIT2(0x22a)
|
|
EMIT2(0x22c) EMIT2(0x22e) EMIT2(0x230)
|
|
EMIT2(0x1e4c) EMIT2(0x1e4e) EMIT2(0x1e50)
|
|
EMIT2(0x1e52) EMIT2(0x1ecc) EMIT2(0x1ece)
|
|
EMIT2(0x1ed0) EMIT2(0x1ed2) EMIT2(0x1ed4)
|
|
EMIT2(0x1ed6) EMIT2(0x1ed8) EMIT2(0x1eda)
|
|
EMIT2(0x1edc) EMIT2(0x1ede) EMIT2(0x1ee0)
|
|
EMIT2(0x1ee2)
|
|
return;
|
|
|
|
case 'P':
|
|
case 0x1a4:
|
|
case 0x1e54:
|
|
case 0x1e56:
|
|
case 0x2c63:
|
|
EMIT2('P') EMIT2(0x1a4) EMIT2(0x1e54) EMIT2(0x1e56)
|
|
EMIT2(0x2c63)
|
|
return;
|
|
|
|
case 'Q':
|
|
case 0x24a:
|
|
EMIT2('Q') EMIT2(0x24a)
|
|
return;
|
|
|
|
case 'R':
|
|
case 0x154:
|
|
case 0x156:
|
|
case 0x158:
|
|
case 0x210:
|
|
case 0x212:
|
|
case 0x24c:
|
|
case 0x1e58:
|
|
case 0x1e5a:
|
|
case 0x1e5c:
|
|
case 0x1e5e:
|
|
case 0x2c64:
|
|
case 0xa7a6:
|
|
EMIT2('R') EMIT2(0x154) EMIT2(0x156) EMIT2(0x158)
|
|
EMIT2(0x210) EMIT2(0x212) EMIT2(0x24c) EMIT2(0x1e58)
|
|
EMIT2(0x1e5a) EMIT2(0x1e5c) EMIT2(0x1e5e) EMIT2(0x2c64)
|
|
EMIT2(0xa7a6)
|
|
return;
|
|
|
|
case 'S':
|
|
case 0x15a:
|
|
case 0x15c:
|
|
case 0x15e:
|
|
case 0x160:
|
|
case 0x218:
|
|
case 0x1e60:
|
|
case 0x1e62:
|
|
case 0x1e64:
|
|
case 0x1e66:
|
|
case 0x1e68:
|
|
case 0x2c7e:
|
|
case 0xa7a8:
|
|
EMIT2('S') EMIT2(0x15a) EMIT2(0x15c) EMIT2(0x15e)
|
|
EMIT2(0x160) EMIT2(0x218) EMIT2(0x1e60) EMIT2(0x1e62)
|
|
EMIT2(0x1e64) EMIT2(0x1e66) EMIT2(0x1e68) EMIT2(0x2c7e)
|
|
EMIT2(0xa7a8)
|
|
return;
|
|
|
|
case 'T':
|
|
case 0x162:
|
|
case 0x164:
|
|
case 0x166:
|
|
case 0x1ac:
|
|
case 0x1ae:
|
|
case 0x21a:
|
|
case 0x23e:
|
|
case 0x1e6a:
|
|
case 0x1e6c:
|
|
case 0x1e6e:
|
|
case 0x1e70:
|
|
EMIT2('T') EMIT2(0x162) EMIT2(0x164) EMIT2(0x166)
|
|
EMIT2(0x1ac) EMIT2(0x1ae) EMIT2(0x23e) EMIT2(0x21a)
|
|
EMIT2(0x1e6a) EMIT2(0x1e6c) EMIT2(0x1e6e) EMIT2(0x1e70)
|
|
return;
|
|
|
|
case 'U':
|
|
case U_grave:
|
|
case U_acute:
|
|
case U_diaeresis:
|
|
case U_circumflex:
|
|
case 0x168:
|
|
case 0x16a:
|
|
case 0x16c:
|
|
case 0x16e:
|
|
case 0x170:
|
|
case 0x172:
|
|
case 0x1af:
|
|
case 0x1d3:
|
|
case 0x1d5:
|
|
case 0x1d7:
|
|
case 0x1d9:
|
|
case 0x1db:
|
|
case 0x214:
|
|
case 0x216:
|
|
case 0x244:
|
|
case 0x1e72:
|
|
case 0x1e74:
|
|
case 0x1e76:
|
|
case 0x1e78:
|
|
case 0x1e7a:
|
|
case 0x1ee4:
|
|
case 0x1ee6:
|
|
case 0x1ee8:
|
|
case 0x1eea:
|
|
case 0x1eec:
|
|
case 0x1eee:
|
|
case 0x1ef0:
|
|
EMIT2('U') EMIT2(U_grave) EMIT2(U_acute)
|
|
EMIT2(U_diaeresis) EMIT2(U_circumflex)
|
|
EMIT2(0x168) EMIT2(0x16a)
|
|
EMIT2(0x16c) EMIT2(0x16e) EMIT2(0x170)
|
|
EMIT2(0x172) EMIT2(0x1af) EMIT2(0x1d3)
|
|
EMIT2(0x1d5) EMIT2(0x1d7) EMIT2(0x1d9)
|
|
EMIT2(0x1db) EMIT2(0x214) EMIT2(0x216)
|
|
EMIT2(0x244) EMIT2(0x1e72) EMIT2(0x1e74)
|
|
EMIT2(0x1e76) EMIT2(0x1e78) EMIT2(0x1e7a)
|
|
EMIT2(0x1ee4) EMIT2(0x1ee6) EMIT2(0x1ee8)
|
|
EMIT2(0x1eea) EMIT2(0x1eec) EMIT2(0x1eee)
|
|
EMIT2(0x1ef0)
|
|
return;
|
|
|
|
case 'V':
|
|
case 0x1b2:
|
|
case 0x1e7c:
|
|
case 0x1e7e:
|
|
EMIT2('V') EMIT2(0x1b2) EMIT2(0x1e7c) EMIT2(0x1e7e)
|
|
return;
|
|
|
|
case 'W':
|
|
case 0x174:
|
|
case 0x1e80:
|
|
case 0x1e82:
|
|
case 0x1e84:
|
|
case 0x1e86:
|
|
case 0x1e88:
|
|
EMIT2('W') EMIT2(0x174) EMIT2(0x1e80) EMIT2(0x1e82)
|
|
EMIT2(0x1e84) EMIT2(0x1e86) EMIT2(0x1e88)
|
|
return;
|
|
|
|
case 'X':
|
|
case 0x1e8a:
|
|
case 0x1e8c:
|
|
EMIT2('X') EMIT2(0x1e8a) EMIT2(0x1e8c)
|
|
return;
|
|
|
|
case 'Y':
|
|
case Y_acute:
|
|
case 0x176:
|
|
case 0x178:
|
|
case 0x1b3:
|
|
case 0x232:
|
|
case 0x24e:
|
|
case 0x1e8e:
|
|
case 0x1ef2:
|
|
case 0x1ef4:
|
|
case 0x1ef6:
|
|
case 0x1ef8:
|
|
EMIT2('Y') EMIT2(Y_acute)
|
|
EMIT2(0x176) EMIT2(0x178) EMIT2(0x1b3)
|
|
EMIT2(0x232) EMIT2(0x24e) EMIT2(0x1e8e)
|
|
EMIT2(0x1ef2) EMIT2(0x1ef4) EMIT2(0x1ef6)
|
|
EMIT2(0x1ef8)
|
|
return;
|
|
|
|
case 'Z':
|
|
case 0x179:
|
|
case 0x17b:
|
|
case 0x17d:
|
|
case 0x1b5:
|
|
case 0x1e90:
|
|
case 0x1e92:
|
|
case 0x1e94:
|
|
case 0x2c6b:
|
|
EMIT2('Z') EMIT2(0x179) EMIT2(0x17b) EMIT2(0x17d)
|
|
EMIT2(0x1b5) EMIT2(0x1e90) EMIT2(0x1e92)
|
|
EMIT2(0x1e94) EMIT2(0x2c6b)
|
|
return;
|
|
|
|
case 'a':
|
|
case a_grave:
|
|
case a_acute:
|
|
case a_circumflex:
|
|
case a_virguilla:
|
|
case a_diaeresis:
|
|
case a_ring:
|
|
case 0x101:
|
|
case 0x103:
|
|
case 0x105:
|
|
case 0x1ce:
|
|
case 0x1df:
|
|
case 0x1e1:
|
|
case 0x1fb:
|
|
case 0x201:
|
|
case 0x203:
|
|
case 0x227:
|
|
case 0x1d8f:
|
|
case 0x1e01:
|
|
case 0x1e9a:
|
|
case 0x1ea1:
|
|
case 0x1ea3:
|
|
case 0x1ea5:
|
|
case 0x1ea7:
|
|
case 0x1ea9:
|
|
case 0x1eab:
|
|
case 0x1ead:
|
|
case 0x1eaf:
|
|
case 0x1eb1:
|
|
case 0x1eb3:
|
|
case 0x1eb5:
|
|
case 0x1eb7:
|
|
case 0x2c65:
|
|
EMIT2('a') EMIT2(a_grave) EMIT2(a_acute)
|
|
EMIT2(a_circumflex) EMIT2(a_virguilla)
|
|
EMIT2(a_diaeresis) EMIT2(a_ring)
|
|
EMIT2(0x101) EMIT2(0x103) EMIT2(0x105)
|
|
EMIT2(0x1ce) EMIT2(0x1df) EMIT2(0x1e1)
|
|
EMIT2(0x1fb) EMIT2(0x201) EMIT2(0x203)
|
|
EMIT2(0x227) EMIT2(0x1d8f) EMIT2(0x1e01)
|
|
EMIT2(0x1e9a) EMIT2(0x1ea1) EMIT2(0x1ea3)
|
|
EMIT2(0x1ea5) EMIT2(0x1ea7) EMIT2(0x1ea9)
|
|
EMIT2(0x1eab) EMIT2(0x1ead) EMIT2(0x1eaf)
|
|
EMIT2(0x1eb1) EMIT2(0x1eb3) EMIT2(0x1eb5)
|
|
EMIT2(0x1eb7) EMIT2(0x2c65)
|
|
return;
|
|
|
|
case 'b':
|
|
case 0x180:
|
|
case 0x253:
|
|
case 0x1d6c:
|
|
case 0x1d80:
|
|
case 0x1e03:
|
|
case 0x1e05:
|
|
case 0x1e07:
|
|
EMIT2('b') EMIT2(0x180) EMIT2(0x253) EMIT2(0x1d6c)
|
|
EMIT2(0x1d80) EMIT2(0x1e03) EMIT2(0x1e05) EMIT2(0x1e07)
|
|
return;
|
|
|
|
case 'c':
|
|
case c_cedilla:
|
|
case 0x107:
|
|
case 0x109:
|
|
case 0x10b:
|
|
case 0x10d:
|
|
case 0x188:
|
|
case 0x23c:
|
|
case 0x1e09:
|
|
case 0xa793:
|
|
case 0xa794:
|
|
EMIT2('c') EMIT2(c_cedilla)
|
|
EMIT2(0x107) EMIT2(0x109) EMIT2(0x10b)
|
|
EMIT2(0x10d) EMIT2(0x188) EMIT2(0x23c)
|
|
EMIT2(0x1e09) EMIT2(0xa793) EMIT2(0xa794)
|
|
return;
|
|
|
|
case 'd':
|
|
case 0x10f:
|
|
case 0x111:
|
|
case 0x257:
|
|
case 0x1d6d:
|
|
case 0x1d81:
|
|
case 0x1d91:
|
|
case 0x1e0b:
|
|
case 0x1e0d:
|
|
case 0x1e0f:
|
|
case 0x1e11:
|
|
case 0x1e13:
|
|
EMIT2('d') EMIT2(0x10f) EMIT2(0x111)
|
|
EMIT2(0x257) EMIT2(0x1d6d) EMIT2(0x1d81)
|
|
EMIT2(0x1d91) EMIT2(0x1e0b) EMIT2(0x1e0d)
|
|
EMIT2(0x1e0f) EMIT2(0x1e11) EMIT2(0x1e13)
|
|
return;
|
|
|
|
case 'e':
|
|
case e_grave:
|
|
case e_acute:
|
|
case e_circumflex:
|
|
case e_diaeresis:
|
|
case 0x113:
|
|
case 0x115:
|
|
case 0x117:
|
|
case 0x119:
|
|
case 0x11b:
|
|
case 0x205:
|
|
case 0x207:
|
|
case 0x229:
|
|
case 0x247:
|
|
case 0x1d92:
|
|
case 0x1e15:
|
|
case 0x1e17:
|
|
case 0x1e19:
|
|
case 0x1e1b:
|
|
case 0x1e1d:
|
|
case 0x1eb9:
|
|
case 0x1ebb:
|
|
case 0x1ebd:
|
|
case 0x1ebf:
|
|
case 0x1ec1:
|
|
case 0x1ec3:
|
|
case 0x1ec5:
|
|
case 0x1ec7:
|
|
EMIT2('e') EMIT2(e_grave) EMIT2(e_acute)
|
|
EMIT2(e_circumflex) EMIT2(e_diaeresis)
|
|
EMIT2(0x113) EMIT2(0x115)
|
|
EMIT2(0x117) EMIT2(0x119) EMIT2(0x11b)
|
|
EMIT2(0x205) EMIT2(0x207) EMIT2(0x229)
|
|
EMIT2(0x247) EMIT2(0x1d92) EMIT2(0x1e15)
|
|
EMIT2(0x1e17) EMIT2(0x1e19) EMIT2(0x1e1b)
|
|
EMIT2(0x1e1d) EMIT2(0x1eb9) EMIT2(0x1ebb)
|
|
EMIT2(0x1ebd) EMIT2(0x1ebf) EMIT2(0x1ec1)
|
|
EMIT2(0x1ec3) EMIT2(0x1ec5) EMIT2(0x1ec7)
|
|
return;
|
|
|
|
case 'f':
|
|
case 0x192:
|
|
case 0x1d6e:
|
|
case 0x1d82:
|
|
case 0x1e1f:
|
|
case 0xa799:
|
|
EMIT2('f') EMIT2(0x192) EMIT2(0x1d6e) EMIT2(0x1d82)
|
|
EMIT2(0x1e1f) EMIT2(0xa799)
|
|
return;
|
|
|
|
case 'g':
|
|
case 0x11d:
|
|
case 0x11f:
|
|
case 0x121:
|
|
case 0x123:
|
|
case 0x1e5:
|
|
case 0x1e7:
|
|
case 0x1f5:
|
|
case 0x260:
|
|
case 0x1d83:
|
|
case 0x1e21:
|
|
case 0xa7a1:
|
|
EMIT2('g') EMIT2(0x11d) EMIT2(0x11f) EMIT2(0x121)
|
|
EMIT2(0x123) EMIT2(0x1e5) EMIT2(0x1e7)
|
|
EMIT2(0x1f5) EMIT2(0x260) EMIT2(0x1d83)
|
|
EMIT2(0x1e21) EMIT2(0xa7a1)
|
|
return;
|
|
|
|
case 'h':
|
|
case 0x125:
|
|
case 0x127:
|
|
case 0x21f:
|
|
case 0x1e23:
|
|
case 0x1e25:
|
|
case 0x1e27:
|
|
case 0x1e29:
|
|
case 0x1e2b:
|
|
case 0x1e96:
|
|
case 0x2c68:
|
|
case 0xa795:
|
|
EMIT2('h') EMIT2(0x125) EMIT2(0x127) EMIT2(0x21f)
|
|
EMIT2(0x1e23) EMIT2(0x1e25) EMIT2(0x1e27)
|
|
EMIT2(0x1e29) EMIT2(0x1e2b) EMIT2(0x1e96)
|
|
EMIT2(0x2c68) EMIT2(0xa795)
|
|
return;
|
|
|
|
case 'i':
|
|
case i_grave:
|
|
case i_acute:
|
|
case i_circumflex:
|
|
case i_diaeresis:
|
|
case 0x129:
|
|
case 0x12b:
|
|
case 0x12d:
|
|
case 0x12f:
|
|
case 0x1d0:
|
|
case 0x209:
|
|
case 0x20b:
|
|
case 0x268:
|
|
case 0x1d96:
|
|
case 0x1e2d:
|
|
case 0x1e2f:
|
|
case 0x1ec9:
|
|
case 0x1ecb:
|
|
EMIT2('i') EMIT2(i_grave) EMIT2(i_acute)
|
|
EMIT2(i_circumflex) EMIT2(i_diaeresis)
|
|
EMIT2(0x129) EMIT2(0x12b) EMIT2(0x12d)
|
|
EMIT2(0x12f) EMIT2(0x1d0) EMIT2(0x209)
|
|
EMIT2(0x20b) EMIT2(0x268) EMIT2(0x1d96)
|
|
EMIT2(0x1e2d) EMIT2(0x1e2f) EMIT2(0x1ec9)
|
|
EMIT2(0x1ecb) EMIT2(0x1ecb)
|
|
return;
|
|
|
|
case 'j':
|
|
case 0x135:
|
|
case 0x1f0:
|
|
case 0x249:
|
|
EMIT2('j') EMIT2(0x135) EMIT2(0x1f0) EMIT2(0x249)
|
|
return;
|
|
|
|
case 'k':
|
|
case 0x137:
|
|
case 0x199:
|
|
case 0x1e9:
|
|
case 0x1d84:
|
|
case 0x1e31:
|
|
case 0x1e33:
|
|
case 0x1e35:
|
|
case 0x2c6a:
|
|
case 0xa741:
|
|
EMIT2('k') EMIT2(0x137) EMIT2(0x199) EMIT2(0x1e9)
|
|
EMIT2(0x1d84) EMIT2(0x1e31) EMIT2(0x1e33)
|
|
EMIT2(0x1e35) EMIT2(0x2c6a) EMIT2(0xa741)
|
|
return;
|
|
|
|
case 'l':
|
|
case 0x13a:
|
|
case 0x13c:
|
|
case 0x13e:
|
|
case 0x140:
|
|
case 0x142:
|
|
case 0x19a:
|
|
case 0x1e37:
|
|
case 0x1e39:
|
|
case 0x1e3b:
|
|
case 0x1e3d:
|
|
case 0x2c61:
|
|
EMIT2('l') EMIT2(0x13a) EMIT2(0x13c)
|
|
EMIT2(0x13e) EMIT2(0x140) EMIT2(0x142)
|
|
EMIT2(0x19a) EMIT2(0x1e37) EMIT2(0x1e39)
|
|
EMIT2(0x1e3b) EMIT2(0x1e3d) EMIT2(0x2c61)
|
|
return;
|
|
|
|
case 'm':
|
|
case 0x1d6f:
|
|
case 0x1e3f:
|
|
case 0x1e41:
|
|
case 0x1e43:
|
|
EMIT2('m') EMIT2(0x1d6f) EMIT2(0x1e3f)
|
|
EMIT2(0x1e41) EMIT2(0x1e43)
|
|
return;
|
|
|
|
case 'n':
|
|
case n_virguilla:
|
|
case 0x144:
|
|
case 0x146:
|
|
case 0x148:
|
|
case 0x149:
|
|
case 0x1f9:
|
|
case 0x1d70:
|
|
case 0x1d87:
|
|
case 0x1e45:
|
|
case 0x1e47:
|
|
case 0x1e49:
|
|
case 0x1e4b:
|
|
case 0xa7a5:
|
|
EMIT2('n') EMIT2(n_virguilla)
|
|
EMIT2(0x144) EMIT2(0x146) EMIT2(0x148)
|
|
EMIT2(0x149) EMIT2(0x1f9) EMIT2(0x1d70)
|
|
EMIT2(0x1d87) EMIT2(0x1e45) EMIT2(0x1e47)
|
|
EMIT2(0x1e49) EMIT2(0x1e4b) EMIT2(0xa7a5)
|
|
return;
|
|
|
|
case 'o':
|
|
case o_grave:
|
|
case o_acute:
|
|
case o_circumflex:
|
|
case o_virguilla:
|
|
case o_diaeresis:
|
|
case o_slash:
|
|
case 0x14d:
|
|
case 0x14f:
|
|
case 0x151:
|
|
case 0x1a1:
|
|
case 0x1d2:
|
|
case 0x1eb:
|
|
case 0x1ed:
|
|
case 0x1ff:
|
|
case 0x20d:
|
|
case 0x20f:
|
|
case 0x22b:
|
|
case 0x22d:
|
|
case 0x22f:
|
|
case 0x231:
|
|
case 0x275:
|
|
case 0x1e4d:
|
|
case 0x1e4f:
|
|
case 0x1e51:
|
|
case 0x1e53:
|
|
case 0x1ecd:
|
|
case 0x1ecf:
|
|
case 0x1ed1:
|
|
case 0x1ed3:
|
|
case 0x1ed5:
|
|
case 0x1ed7:
|
|
case 0x1ed9:
|
|
case 0x1edb:
|
|
case 0x1edd:
|
|
case 0x1edf:
|
|
case 0x1ee1:
|
|
case 0x1ee3:
|
|
EMIT2('o') EMIT2(o_grave) EMIT2(o_acute)
|
|
EMIT2(o_circumflex) EMIT2(o_virguilla)
|
|
EMIT2(o_diaeresis) EMIT2(o_slash)
|
|
EMIT2(0x14d) EMIT2(0x14f) EMIT2(0x151)
|
|
EMIT2(0x1a1) EMIT2(0x1d2) EMIT2(0x1eb)
|
|
EMIT2(0x1ed) EMIT2(0x1ff) EMIT2(0x20d)
|
|
EMIT2(0x20f) EMIT2(0x22b) EMIT2(0x22d)
|
|
EMIT2(0x22f) EMIT2(0x231) EMIT2(0x275)
|
|
EMIT2(0x1e4d) EMIT2(0x1e4f) EMIT2(0x1e51)
|
|
EMIT2(0x1e53) EMIT2(0x1ecd) EMIT2(0x1ecf)
|
|
EMIT2(0x1ed1) EMIT2(0x1ed3) EMIT2(0x1ed5)
|
|
EMIT2(0x1ed7) EMIT2(0x1ed9) EMIT2(0x1edb)
|
|
EMIT2(0x1edd) EMIT2(0x1edf) EMIT2(0x1ee1)
|
|
EMIT2(0x1ee3)
|
|
return;
|
|
|
|
case 'p':
|
|
case 0x1a5:
|
|
case 0x1d71:
|
|
case 0x1d7d:
|
|
case 0x1d88:
|
|
case 0x1e55:
|
|
case 0x1e57:
|
|
EMIT2('p') EMIT2(0x1a5) EMIT2(0x1d71) EMIT2(0x1d7d)
|
|
EMIT2(0x1d88) EMIT2(0x1e55) EMIT2(0x1e57)
|
|
return;
|
|
|
|
case 'q':
|
|
case 0x24b:
|
|
case 0x2a0:
|
|
EMIT2('q') EMIT2(0x24b) EMIT2(0x2a0)
|
|
return;
|
|
|
|
case 'r':
|
|
case 0x155:
|
|
case 0x157:
|
|
case 0x159:
|
|
case 0x211:
|
|
case 0x213:
|
|
case 0x24d:
|
|
case 0x27d:
|
|
case 0x1d72:
|
|
case 0x1d73:
|
|
case 0x1d89:
|
|
case 0x1e59:
|
|
case 0x1e5b:
|
|
case 0x1e5d:
|
|
case 0x1e5f:
|
|
case 0xa7a7:
|
|
EMIT2('r') EMIT2(0x155) EMIT2(0x157) EMIT2(0x159)
|
|
EMIT2(0x211) EMIT2(0x213) EMIT2(0x24d) EMIT2(0x27d)
|
|
EMIT2(0x1d72) EMIT2(0x1d73) EMIT2(0x1d89) EMIT2(0x1e59)
|
|
EMIT2(0x1e5b) EMIT2(0x1e5d) EMIT2(0x1e5f) EMIT2(0xa7a7)
|
|
return;
|
|
|
|
case 's':
|
|
case 0x15b:
|
|
case 0x15d:
|
|
case 0x15f:
|
|
case 0x161:
|
|
case 0x219:
|
|
case 0x23f:
|
|
case 0x1d74:
|
|
case 0x1d8a:
|
|
case 0x1e61:
|
|
case 0x1e63:
|
|
case 0x1e65:
|
|
case 0x1e67:
|
|
case 0x1e69:
|
|
case 0xa7a9:
|
|
EMIT2('s') EMIT2(0x15b) EMIT2(0x15d) EMIT2(0x15f)
|
|
EMIT2(0x161) EMIT2(0x219) EMIT2(0x23f) EMIT2(0x1d74)
|
|
EMIT2(0x1d8a) EMIT2(0x1e61) EMIT2(0x1e63) EMIT2(0x1e65)
|
|
EMIT2(0x1e67) EMIT2(0x1e69) EMIT2(0xa7a9)
|
|
return;
|
|
|
|
case 't':
|
|
case 0x163:
|
|
case 0x165:
|
|
case 0x167:
|
|
case 0x1ab:
|
|
case 0x1ad:
|
|
case 0x21b:
|
|
case 0x288:
|
|
case 0x1d75:
|
|
case 0x1e6b:
|
|
case 0x1e6d:
|
|
case 0x1e6f:
|
|
case 0x1e71:
|
|
case 0x1e97:
|
|
case 0x2c66:
|
|
EMIT2('t') EMIT2(0x163) EMIT2(0x165) EMIT2(0x167)
|
|
EMIT2(0x1ab) EMIT2(0x1ad) EMIT2(0x21b) EMIT2(0x288)
|
|
EMIT2(0x1d75) EMIT2(0x1e6b) EMIT2(0x1e6d) EMIT2(0x1e6f)
|
|
EMIT2(0x1e71) EMIT2(0x1e97) EMIT2(0x2c66)
|
|
return;
|
|
|
|
case 'u':
|
|
case u_grave:
|
|
case u_acute:
|
|
case u_circumflex:
|
|
case u_diaeresis:
|
|
case 0x169:
|
|
case 0x16b:
|
|
case 0x16d:
|
|
case 0x16f:
|
|
case 0x171:
|
|
case 0x173:
|
|
case 0x1b0:
|
|
case 0x1d4:
|
|
case 0x1d6:
|
|
case 0x1d8:
|
|
case 0x1da:
|
|
case 0x1dc:
|
|
case 0x215:
|
|
case 0x217:
|
|
case 0x289:
|
|
case 0x1d7e:
|
|
case 0x1d99:
|
|
case 0x1e73:
|
|
case 0x1e75:
|
|
case 0x1e77:
|
|
case 0x1e79:
|
|
case 0x1e7b:
|
|
case 0x1ee5:
|
|
case 0x1ee7:
|
|
case 0x1ee9:
|
|
case 0x1eeb:
|
|
case 0x1eed:
|
|
case 0x1eef:
|
|
case 0x1ef1:
|
|
EMIT2('u') EMIT2(u_grave) EMIT2(u_acute)
|
|
EMIT2(u_circumflex) EMIT2(u_diaeresis)
|
|
EMIT2(0x169) EMIT2(0x16b)
|
|
EMIT2(0x16d) EMIT2(0x16f) EMIT2(0x171)
|
|
EMIT2(0x173) EMIT2(0x1d6) EMIT2(0x1d8)
|
|
EMIT2(0x215) EMIT2(0x217) EMIT2(0x1b0)
|
|
EMIT2(0x1d4) EMIT2(0x1da) EMIT2(0x1dc)
|
|
EMIT2(0x289) EMIT2(0x1e73) EMIT2(0x1d7e)
|
|
EMIT2(0x1d99) EMIT2(0x1e75) EMIT2(0x1e77)
|
|
EMIT2(0x1e79) EMIT2(0x1e7b) EMIT2(0x1ee5)
|
|
EMIT2(0x1ee7) EMIT2(0x1ee9) EMIT2(0x1eeb)
|
|
EMIT2(0x1eed) EMIT2(0x1eef) EMIT2(0x1ef1)
|
|
return;
|
|
|
|
case 'v':
|
|
case 0x28b:
|
|
case 0x1d8c:
|
|
case 0x1e7d:
|
|
case 0x1e7f:
|
|
EMIT2('v') EMIT2(0x28b) EMIT2(0x1d8c) EMIT2(0x1e7d)
|
|
EMIT2(0x1e7f)
|
|
return;
|
|
|
|
case 'w':
|
|
case 0x175:
|
|
case 0x1e81:
|
|
case 0x1e83:
|
|
case 0x1e85:
|
|
case 0x1e87:
|
|
case 0x1e89:
|
|
case 0x1e98:
|
|
EMIT2('w') EMIT2(0x175) EMIT2(0x1e81) EMIT2(0x1e83)
|
|
EMIT2(0x1e85) EMIT2(0x1e87) EMIT2(0x1e89) EMIT2(0x1e98)
|
|
return;
|
|
|
|
case 'x':
|
|
case 0x1e8b:
|
|
case 0x1e8d:
|
|
EMIT2('x') EMIT2(0x1e8b) EMIT2(0x1e8d)
|
|
return;
|
|
|
|
case 'y':
|
|
case y_acute:
|
|
case y_diaeresis:
|
|
case 0x177:
|
|
case 0x1b4:
|
|
case 0x233:
|
|
case 0x24f:
|
|
case 0x1e8f:
|
|
case 0x1e99:
|
|
case 0x1ef3:
|
|
case 0x1ef5:
|
|
case 0x1ef7:
|
|
case 0x1ef9:
|
|
EMIT2('y') EMIT2(y_acute) EMIT2(y_diaeresis)
|
|
EMIT2(0x177) EMIT2(0x1b4) EMIT2(0x233) EMIT2(0x24f)
|
|
EMIT2(0x1e8f) EMIT2(0x1e99) EMIT2(0x1ef3)
|
|
EMIT2(0x1ef5) EMIT2(0x1ef7) EMIT2(0x1ef9)
|
|
return;
|
|
|
|
case 'z':
|
|
case 0x17a:
|
|
case 0x17c:
|
|
case 0x17e:
|
|
case 0x1b6:
|
|
case 0x1d76:
|
|
case 0x1d8e:
|
|
case 0x1e91:
|
|
case 0x1e93:
|
|
case 0x1e95:
|
|
case 0x2c6c:
|
|
EMIT2('z') EMIT2(0x17a) EMIT2(0x17c) EMIT2(0x17e)
|
|
EMIT2(0x1b6) EMIT2(0x1d76) EMIT2(0x1d8e) EMIT2(0x1e91)
|
|
EMIT2(0x1e93) EMIT2(0x1e95) EMIT2(0x2c6c)
|
|
return;
|
|
|
|
// default: character itself
|
|
}
|
|
}
|
|
|
|
EMIT2(c);
|
|
#undef EMIT2
|
|
}
|
|
|
|
// Code to parse regular expression.
|
|
//
|
|
// We try to reuse parsing functions in regexp.c to
|
|
// minimize surprise and keep the syntax consistent.
|
|
|
|
// Parse the lowest level.
|
|
//
|
|
// An atom can be one of a long list of items. Many atoms match one character
|
|
// in the text. It is often an ordinary character or a character class.
|
|
// Braces can be used to make a pattern into an atom. The "\z(\)" construct
|
|
// is only for syntax highlighting.
|
|
//
|
|
// atom ::= ordinary-atom
|
|
// or \( pattern \)
|
|
// or \%( pattern \)
|
|
// or \z( pattern \)
|
|
static int nfa_regatom(void)
|
|
{
|
|
int c;
|
|
int charclass;
|
|
int equiclass;
|
|
int collclass;
|
|
int got_coll_char;
|
|
uint8_t *p;
|
|
uint8_t *endp;
|
|
uint8_t *old_regparse = (uint8_t *)regparse;
|
|
int extra = 0;
|
|
int emit_range;
|
|
int negated;
|
|
int startc = -1;
|
|
int save_prev_at_start = prev_at_start;
|
|
|
|
c = getchr();
|
|
switch (c) {
|
|
case NUL:
|
|
EMSG_RET_FAIL(_(e_nul_found));
|
|
|
|
case Magic('^'):
|
|
EMIT(NFA_BOL);
|
|
break;
|
|
|
|
case Magic('$'):
|
|
EMIT(NFA_EOL);
|
|
had_eol = true;
|
|
break;
|
|
|
|
case Magic('<'):
|
|
EMIT(NFA_BOW);
|
|
break;
|
|
|
|
case Magic('>'):
|
|
EMIT(NFA_EOW);
|
|
break;
|
|
|
|
case Magic('_'):
|
|
c = no_Magic(getchr());
|
|
if (c == NUL) {
|
|
EMSG_RET_FAIL(_(e_nul_found));
|
|
}
|
|
|
|
if (c == '^') { // "\_^" is start-of-line
|
|
EMIT(NFA_BOL);
|
|
break;
|
|
}
|
|
if (c == '$') { // "\_$" is end-of-line
|
|
EMIT(NFA_EOL);
|
|
had_eol = true;
|
|
break;
|
|
}
|
|
|
|
extra = NFA_ADD_NL;
|
|
|
|
// "\_[" is collection plus newline
|
|
if (c == '[') {
|
|
goto collection;
|
|
}
|
|
|
|
// "\_x" is character class plus newline
|
|
FALLTHROUGH;
|
|
|
|
// Character classes.
|
|
case Magic('.'):
|
|
case Magic('i'):
|
|
case Magic('I'):
|
|
case Magic('k'):
|
|
case Magic('K'):
|
|
case Magic('f'):
|
|
case Magic('F'):
|
|
case Magic('p'):
|
|
case Magic('P'):
|
|
case Magic('s'):
|
|
case Magic('S'):
|
|
case Magic('d'):
|
|
case Magic('D'):
|
|
case Magic('x'):
|
|
case Magic('X'):
|
|
case Magic('o'):
|
|
case Magic('O'):
|
|
case Magic('w'):
|
|
case Magic('W'):
|
|
case Magic('h'):
|
|
case Magic('H'):
|
|
case Magic('a'):
|
|
case Magic('A'):
|
|
case Magic('l'):
|
|
case Magic('L'):
|
|
case Magic('u'):
|
|
case Magic('U'):
|
|
p = (uint8_t *)vim_strchr((char *)classchars, no_Magic(c));
|
|
if (p == NULL) {
|
|
if (extra == NFA_ADD_NL) {
|
|
semsg(_(e_ill_char_class), (int64_t)c);
|
|
rc_did_emsg = true;
|
|
return FAIL;
|
|
}
|
|
siemsg("INTERNAL: Unknown character class char: %" PRId64, (int64_t)c);
|
|
return FAIL;
|
|
}
|
|
// When '.' is followed by a composing char ignore the dot, so that
|
|
// the composing char is matched here.
|
|
if (c == Magic('.') && utf_iscomposing(peekchr())) {
|
|
old_regparse = (uint8_t *)regparse;
|
|
c = getchr();
|
|
goto nfa_do_multibyte;
|
|
}
|
|
EMIT(nfa_classcodes[p - classchars]);
|
|
if (extra == NFA_ADD_NL) {
|
|
EMIT(NFA_NEWL);
|
|
EMIT(NFA_OR);
|
|
regflags |= RF_HASNL;
|
|
}
|
|
break;
|
|
|
|
case Magic('n'):
|
|
if (reg_string) {
|
|
// In a string "\n" matches a newline character.
|
|
EMIT(NL);
|
|
} else {
|
|
// In buffer text "\n" matches the end of a line.
|
|
EMIT(NFA_NEWL);
|
|
regflags |= RF_HASNL;
|
|
}
|
|
break;
|
|
|
|
case Magic('('):
|
|
if (nfa_reg(REG_PAREN) == FAIL) {
|
|
return FAIL; // cascaded error
|
|
}
|
|
break;
|
|
|
|
case Magic('|'):
|
|
case Magic('&'):
|
|
case Magic(')'):
|
|
semsg(_(e_misplaced), (char)no_Magic(c));
|
|
return FAIL;
|
|
|
|
case Magic('='):
|
|
case Magic('?'):
|
|
case Magic('+'):
|
|
case Magic('@'):
|
|
case Magic('*'):
|
|
case Magic('{'):
|
|
// these should follow an atom, not form an atom
|
|
semsg(_(e_misplaced), (char)no_Magic(c));
|
|
return FAIL;
|
|
|
|
case Magic('~'): {
|
|
uint8_t *lp;
|
|
|
|
// Previous substitute pattern.
|
|
// Generated as "\%(pattern\)".
|
|
if (reg_prev_sub == NULL) {
|
|
emsg(_(e_nopresub));
|
|
return FAIL;
|
|
}
|
|
for (lp = (uint8_t *)reg_prev_sub; *lp != NUL; lp += utf_ptr2len((char *)lp)) {
|
|
EMIT(utf_ptr2char((char *)lp));
|
|
if (lp != (uint8_t *)reg_prev_sub) {
|
|
EMIT(NFA_CONCAT);
|
|
}
|
|
}
|
|
EMIT(NFA_NOPEN);
|
|
break;
|
|
}
|
|
|
|
case Magic('1'):
|
|
case Magic('2'):
|
|
case Magic('3'):
|
|
case Magic('4'):
|
|
case Magic('5'):
|
|
case Magic('6'):
|
|
case Magic('7'):
|
|
case Magic('8'):
|
|
case Magic('9'): {
|
|
int refnum = no_Magic(c) - '1';
|
|
|
|
if (!seen_endbrace(refnum + 1)) {
|
|
return FAIL;
|
|
}
|
|
EMIT(NFA_BACKREF1 + refnum);
|
|
rex.nfa_has_backref = true;
|
|
}
|
|
break;
|
|
|
|
case Magic('z'):
|
|
c = no_Magic(getchr());
|
|
switch (c) {
|
|
case 's':
|
|
EMIT(NFA_ZSTART);
|
|
if (!re_mult_next("\\zs")) {
|
|
return false;
|
|
}
|
|
break;
|
|
case 'e':
|
|
EMIT(NFA_ZEND);
|
|
rex.nfa_has_zend = true;
|
|
if (!re_mult_next("\\zs")) {
|
|
return false;
|
|
}
|
|
break;
|
|
case '1':
|
|
case '2':
|
|
case '3':
|
|
case '4':
|
|
case '5':
|
|
case '6':
|
|
case '7':
|
|
case '8':
|
|
case '9':
|
|
// \z1...\z9
|
|
if ((reg_do_extmatch & REX_USE) == 0) {
|
|
EMSG_RET_FAIL(_(e_z1_not_allowed));
|
|
}
|
|
EMIT(NFA_ZREF1 + (no_Magic(c) - '1'));
|
|
// No need to set rex.nfa_has_backref, the sub-matches don't
|
|
// change when \z1 .. \z9 matches or not.
|
|
re_has_z = REX_USE;
|
|
break;
|
|
case '(':
|
|
// \z(
|
|
if (reg_do_extmatch != REX_SET) {
|
|
EMSG_RET_FAIL(_(e_z_not_allowed));
|
|
}
|
|
if (nfa_reg(REG_ZPAREN) == FAIL) {
|
|
return FAIL; // cascaded error
|
|
}
|
|
re_has_z = REX_SET;
|
|
break;
|
|
default:
|
|
semsg(_("E867: (NFA) Unknown operator '\\z%c'"),
|
|
no_Magic(c));
|
|
return FAIL;
|
|
}
|
|
break;
|
|
|
|
case Magic('%'):
|
|
c = no_Magic(getchr());
|
|
switch (c) {
|
|
// () without a back reference
|
|
case '(':
|
|
if (nfa_reg(REG_NPAREN) == FAIL) {
|
|
return FAIL;
|
|
}
|
|
EMIT(NFA_NOPEN);
|
|
break;
|
|
|
|
case 'd': // %d123 decimal
|
|
case 'o': // %o123 octal
|
|
case 'x': // %xab hex 2
|
|
case 'u': // %uabcd hex 4
|
|
case 'U': // %U1234abcd hex 8
|
|
{
|
|
int64_t nr;
|
|
|
|
switch (c) {
|
|
case 'd':
|
|
nr = getdecchrs(); break;
|
|
case 'o':
|
|
nr = getoctchrs(); break;
|
|
case 'x':
|
|
nr = gethexchrs(2); break;
|
|
case 'u':
|
|
nr = gethexchrs(4); break;
|
|
case 'U':
|
|
nr = gethexchrs(8); break;
|
|
default:
|
|
nr = -1; break;
|
|
}
|
|
|
|
if (nr < 0 || nr > INT_MAX) {
|
|
EMSG2_RET_FAIL(_("E678: Invalid character after %s%%[dxouU]"),
|
|
reg_magic == MAGIC_ALL);
|
|
}
|
|
// A NUL is stored in the text as NL
|
|
// TODO(vim): what if a composing character follows?
|
|
EMIT(nr == 0 ? 0x0a : (int)nr);
|
|
}
|
|
break;
|
|
|
|
// Catch \%^ and \%$ regardless of where they appear in the
|
|
// pattern -- regardless of whether or not it makes sense.
|
|
case '^':
|
|
EMIT(NFA_BOF);
|
|
break;
|
|
|
|
case '$':
|
|
EMIT(NFA_EOF);
|
|
break;
|
|
|
|
case '#':
|
|
if (regparse[0] == '=' && regparse[1] >= 48
|
|
&& regparse[1] <= 50) {
|
|
// misplaced \%#=1
|
|
semsg(_(e_atom_engine_must_be_at_start_of_pattern), regparse[1]);
|
|
return FAIL;
|
|
}
|
|
EMIT(NFA_CURSOR);
|
|
break;
|
|
|
|
case 'V':
|
|
EMIT(NFA_VISUAL);
|
|
break;
|
|
|
|
case 'C':
|
|
EMIT(NFA_ANY_COMPOSING);
|
|
break;
|
|
|
|
case '[': {
|
|
int n;
|
|
|
|
// \%[abc]
|
|
for (n = 0; (c = peekchr()) != ']'; n++) {
|
|
if (c == NUL) {
|
|
EMSG2_RET_FAIL(_(e_missing_sb),
|
|
reg_magic == MAGIC_ALL);
|
|
}
|
|
// recursive call!
|
|
if (nfa_regatom() == FAIL) {
|
|
return FAIL;
|
|
}
|
|
}
|
|
(void)getchr(); // get the ]
|
|
if (n == 0) {
|
|
EMSG2_RET_FAIL(_(e_empty_sb), reg_magic == MAGIC_ALL);
|
|
}
|
|
EMIT(NFA_OPT_CHARS);
|
|
EMIT(n);
|
|
|
|
// Emit as "\%(\%[abc]\)" to be able to handle
|
|
// "\%[abc]*" which would cause the empty string to be
|
|
// matched an unlimited number of times. NFA_NOPEN is
|
|
// added only once at a position, while NFA_SPLIT is
|
|
// added multiple times. This is more efficient than
|
|
// not allowing NFA_SPLIT multiple times, it is used
|
|
// a lot.
|
|
EMIT(NFA_NOPEN);
|
|
break;
|
|
}
|
|
|
|
default: {
|
|
int64_t n = 0;
|
|
const int cmp = c;
|
|
bool cur = false;
|
|
bool got_digit = false;
|
|
|
|
if (c == '<' || c == '>') {
|
|
c = getchr();
|
|
}
|
|
if (no_Magic(c) == '.') {
|
|
cur = true;
|
|
c = getchr();
|
|
}
|
|
while (ascii_isdigit(c)) {
|
|
if (cur) {
|
|
semsg(_(e_regexp_number_after_dot_pos_search_chr), no_Magic(c));
|
|
return FAIL;
|
|
}
|
|
if (n > (INT32_MAX - (c - '0')) / 10) {
|
|
// overflow.
|
|
emsg(_(e_value_too_large));
|
|
return FAIL;
|
|
}
|
|
n = n * 10 + (c - '0');
|
|
c = getchr();
|
|
got_digit = true;
|
|
}
|
|
if (c == 'l' || c == 'c' || c == 'v') {
|
|
int32_t limit = INT32_MAX;
|
|
|
|
if (!cur && !got_digit) {
|
|
semsg(_(e_nfa_regexp_missing_value_in_chr), no_Magic(c));
|
|
return FAIL;
|
|
}
|
|
if (c == 'l') {
|
|
if (cur) {
|
|
n = curwin->w_cursor.lnum;
|
|
}
|
|
// \%{n}l \%{n}<l \%{n}>l
|
|
EMIT(cmp == '<' ? NFA_LNUM_LT
|
|
: cmp == '>' ? NFA_LNUM_GT : NFA_LNUM);
|
|
if (save_prev_at_start) {
|
|
at_start = true;
|
|
}
|
|
} else if (c == 'c') {
|
|
if (cur) {
|
|
n = curwin->w_cursor.col;
|
|
n++;
|
|
}
|
|
// \%{n}c \%{n}<c \%{n}>c
|
|
EMIT(cmp == '<' ? NFA_COL_LT
|
|
: cmp == '>' ? NFA_COL_GT : NFA_COL);
|
|
} else {
|
|
if (cur) {
|
|
colnr_T vcol = 0;
|
|
getvvcol(curwin, &curwin->w_cursor, NULL, NULL, &vcol);
|
|
n = ++vcol;
|
|
}
|
|
// \%{n}v \%{n}<v \%{n}>v
|
|
EMIT(cmp == '<' ? NFA_VCOL_LT
|
|
: cmp == '>' ? NFA_VCOL_GT : NFA_VCOL);
|
|
limit = INT32_MAX / MB_MAXBYTES;
|
|
}
|
|
if (n >= limit) {
|
|
emsg(_(e_value_too_large));
|
|
return FAIL;
|
|
}
|
|
EMIT((int)n);
|
|
break;
|
|
} else if (c == '\'' && n == 0) {
|
|
// \%'m \%<'m \%>'m
|
|
EMIT(cmp == '<' ? NFA_MARK_LT
|
|
: cmp == '>' ? NFA_MARK_GT : NFA_MARK);
|
|
EMIT(getchr());
|
|
break;
|
|
}
|
|
}
|
|
semsg(_("E867: (NFA) Unknown operator '\\%%%c'"),
|
|
no_Magic(c));
|
|
return FAIL;
|
|
}
|
|
break;
|
|
|
|
case Magic('['):
|
|
collection:
|
|
// [abc] uses NFA_START_COLL - NFA_END_COLL
|
|
// [^abc] uses NFA_START_NEG_COLL - NFA_END_NEG_COLL
|
|
// Each character is produced as a regular state, using
|
|
// NFA_CONCAT to bind them together.
|
|
// Besides normal characters there can be:
|
|
// - character classes NFA_CLASS_*
|
|
// - ranges, two characters followed by NFA_RANGE.
|
|
|
|
p = (uint8_t *)regparse;
|
|
endp = (uint8_t *)skip_anyof((char *)p);
|
|
if (*endp == ']') {
|
|
// Try to reverse engineer character classes. For example,
|
|
// recognize that [0-9] stands for \d and [A-Za-z_] for \h,
|
|
// and perform the necessary substitutions in the NFA.
|
|
int result = nfa_recognize_char_class((uint8_t *)regparse, endp, extra == NFA_ADD_NL);
|
|
if (result != FAIL) {
|
|
if (result >= NFA_FIRST_NL && result <= NFA_LAST_NL) {
|
|
EMIT(result - NFA_ADD_NL);
|
|
EMIT(NFA_NEWL);
|
|
EMIT(NFA_OR);
|
|
} else {
|
|
EMIT(result);
|
|
}
|
|
regparse = (char *)endp;
|
|
MB_PTR_ADV(regparse);
|
|
return OK;
|
|
}
|
|
// Failed to recognize a character class. Use the simple
|
|
// version that turns [abc] into 'a' OR 'b' OR 'c'
|
|
negated = false;
|
|
if (*regparse == '^') { // negated range
|
|
negated = true;
|
|
MB_PTR_ADV(regparse);
|
|
EMIT(NFA_START_NEG_COLL);
|
|
} else {
|
|
EMIT(NFA_START_COLL);
|
|
}
|
|
if (*regparse == '-') {
|
|
startc = '-';
|
|
EMIT(startc);
|
|
EMIT(NFA_CONCAT);
|
|
MB_PTR_ADV(regparse);
|
|
}
|
|
// Emit the OR branches for each character in the []
|
|
emit_range = false;
|
|
while ((uint8_t *)regparse < endp) {
|
|
int oldstartc = startc;
|
|
startc = -1;
|
|
got_coll_char = false;
|
|
if (*regparse == '[') {
|
|
// Check for [: :], [= =], [. .]
|
|
equiclass = collclass = 0;
|
|
charclass = get_char_class(®parse);
|
|
if (charclass == CLASS_NONE) {
|
|
equiclass = get_equi_class(®parse);
|
|
if (equiclass == 0) {
|
|
collclass = get_coll_element(®parse);
|
|
}
|
|
}
|
|
|
|
// Character class like [:alpha:]
|
|
if (charclass != CLASS_NONE) {
|
|
switch (charclass) {
|
|
case CLASS_ALNUM:
|
|
EMIT(NFA_CLASS_ALNUM);
|
|
break;
|
|
case CLASS_ALPHA:
|
|
EMIT(NFA_CLASS_ALPHA);
|
|
break;
|
|
case CLASS_BLANK:
|
|
EMIT(NFA_CLASS_BLANK);
|
|
break;
|
|
case CLASS_CNTRL:
|
|
EMIT(NFA_CLASS_CNTRL);
|
|
break;
|
|
case CLASS_DIGIT:
|
|
EMIT(NFA_CLASS_DIGIT);
|
|
break;
|
|
case CLASS_GRAPH:
|
|
EMIT(NFA_CLASS_GRAPH);
|
|
break;
|
|
case CLASS_LOWER:
|
|
wants_nfa = true;
|
|
EMIT(NFA_CLASS_LOWER);
|
|
break;
|
|
case CLASS_PRINT:
|
|
EMIT(NFA_CLASS_PRINT);
|
|
break;
|
|
case CLASS_PUNCT:
|
|
EMIT(NFA_CLASS_PUNCT);
|
|
break;
|
|
case CLASS_SPACE:
|
|
EMIT(NFA_CLASS_SPACE);
|
|
break;
|
|
case CLASS_UPPER:
|
|
wants_nfa = true;
|
|
EMIT(NFA_CLASS_UPPER);
|
|
break;
|
|
case CLASS_XDIGIT:
|
|
EMIT(NFA_CLASS_XDIGIT);
|
|
break;
|
|
case CLASS_TAB:
|
|
EMIT(NFA_CLASS_TAB);
|
|
break;
|
|
case CLASS_RETURN:
|
|
EMIT(NFA_CLASS_RETURN);
|
|
break;
|
|
case CLASS_BACKSPACE:
|
|
EMIT(NFA_CLASS_BACKSPACE);
|
|
break;
|
|
case CLASS_ESCAPE:
|
|
EMIT(NFA_CLASS_ESCAPE);
|
|
break;
|
|
case CLASS_IDENT:
|
|
EMIT(NFA_CLASS_IDENT);
|
|
break;
|
|
case CLASS_KEYWORD:
|
|
EMIT(NFA_CLASS_KEYWORD);
|
|
break;
|
|
case CLASS_FNAME:
|
|
EMIT(NFA_CLASS_FNAME);
|
|
break;
|
|
}
|
|
EMIT(NFA_CONCAT);
|
|
continue;
|
|
}
|
|
// Try equivalence class [=a=] and the like
|
|
if (equiclass != 0) {
|
|
nfa_emit_equi_class(equiclass);
|
|
continue;
|
|
}
|
|
// Try collating class like [. .]
|
|
if (collclass != 0) {
|
|
startc = collclass; // allow [.a.]-x as a range
|
|
// Will emit the proper atom at the end of the
|
|
// while loop.
|
|
}
|
|
}
|
|
// Try a range like 'a-x' or '\t-z'. Also allows '-' as a
|
|
// start character.
|
|
if (*regparse == '-' && oldstartc != -1) {
|
|
emit_range = true;
|
|
startc = oldstartc;
|
|
MB_PTR_ADV(regparse);
|
|
continue; // reading the end of the range
|
|
}
|
|
|
|
// Now handle simple and escaped characters.
|
|
// Only "\]", "\^", "\]" and "\\" are special in Vi. Vim
|
|
// accepts "\t", "\e", etc., but only when the 'l' flag in
|
|
// 'cpoptions' is not included.
|
|
if (*regparse == '\\'
|
|
&& (uint8_t *)regparse + 1 <= endp
|
|
&& (vim_strchr(REGEXP_INRANGE, (uint8_t)regparse[1]) != NULL
|
|
|| (!reg_cpo_lit
|
|
&& vim_strchr(REGEXP_ABBR, (uint8_t)regparse[1])
|
|
!= NULL))) {
|
|
MB_PTR_ADV(regparse);
|
|
|
|
if (*regparse == 'n') {
|
|
startc = (reg_string || emit_range || regparse[1] == '-')
|
|
? NL : NFA_NEWL;
|
|
} else if (*regparse == 'd'
|
|
|| *regparse == 'o'
|
|
|| *regparse == 'x'
|
|
|| *regparse == 'u'
|
|
|| *regparse == 'U') {
|
|
// TODO(RE): This needs more testing
|
|
startc = coll_get_char();
|
|
got_coll_char = true;
|
|
MB_PTR_BACK(old_regparse, regparse);
|
|
} else {
|
|
// \r,\t,\e,\b
|
|
startc = backslash_trans(*regparse);
|
|
}
|
|
}
|
|
|
|
// Normal printable char
|
|
if (startc == -1) {
|
|
startc = utf_ptr2char(regparse);
|
|
}
|
|
|
|
// Previous char was '-', so this char is end of range.
|
|
if (emit_range) {
|
|
int endc = startc;
|
|
startc = oldstartc;
|
|
if (startc > endc) {
|
|
EMSG_RET_FAIL(_(e_reverse_range));
|
|
}
|
|
|
|
if (endc > startc + 2) {
|
|
// Emit a range instead of the sequence of
|
|
// individual characters.
|
|
if (startc == 0) {
|
|
// \x00 is translated to \x0a, start at \x01.
|
|
EMIT(1);
|
|
} else {
|
|
post_ptr--; // remove NFA_CONCAT
|
|
}
|
|
EMIT(endc);
|
|
EMIT(NFA_RANGE);
|
|
EMIT(NFA_CONCAT);
|
|
} else if (utf_char2len(startc) > 1
|
|
|| utf_char2len(endc) > 1) {
|
|
// Emit the characters in the range.
|
|
// "startc" was already emitted, so skip it.
|
|
for (c = startc + 1; c <= endc; c++) {
|
|
EMIT(c);
|
|
EMIT(NFA_CONCAT);
|
|
}
|
|
} else {
|
|
// Emit the range. "startc" was already emitted, so
|
|
// skip it.
|
|
for (c = startc + 1; c <= endc; c++) {
|
|
EMIT(c);
|
|
EMIT(NFA_CONCAT);
|
|
}
|
|
}
|
|
emit_range = false;
|
|
startc = -1;
|
|
} else {
|
|
// This char (startc) is not part of a range. Just
|
|
// emit it.
|
|
// Normally, simply emit startc. But if we get char
|
|
// code=0 from a collating char, then replace it with
|
|
// 0x0a.
|
|
// This is needed to completely mimic the behaviour of
|
|
// the backtracking engine.
|
|
if (startc == NFA_NEWL) {
|
|
// Line break can't be matched as part of the
|
|
// collection, add an OR below. But not for negated
|
|
// range.
|
|
if (!negated) {
|
|
extra = NFA_ADD_NL;
|
|
}
|
|
} else {
|
|
if (got_coll_char == true && startc == 0) {
|
|
EMIT(0x0a);
|
|
EMIT(NFA_CONCAT);
|
|
} else {
|
|
EMIT(startc);
|
|
if (utf_ptr2len(regparse) == utfc_ptr2len(regparse)) {
|
|
EMIT(NFA_CONCAT);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int plen;
|
|
if (utf_ptr2len(regparse) != (plen = utfc_ptr2len(regparse))) {
|
|
int i = utf_ptr2len(regparse);
|
|
|
|
c = utf_ptr2char(regparse + i);
|
|
|
|
// Add composing characters
|
|
while (true) {
|
|
if (c == 0) {
|
|
// \x00 is translated to \x0a, start at \x01.
|
|
EMIT(1);
|
|
} else {
|
|
EMIT(c);
|
|
}
|
|
EMIT(NFA_CONCAT);
|
|
if ((i += utf_char2len(c)) >= plen) {
|
|
break;
|
|
}
|
|
c = utf_ptr2char(regparse + i);
|
|
}
|
|
EMIT(NFA_COMPOSING);
|
|
EMIT(NFA_CONCAT);
|
|
}
|
|
MB_PTR_ADV(regparse);
|
|
} // while (p < endp)
|
|
|
|
MB_PTR_BACK(old_regparse, regparse);
|
|
if (*regparse == '-') { // if last, '-' is just a char
|
|
EMIT('-');
|
|
EMIT(NFA_CONCAT);
|
|
}
|
|
|
|
// skip the trailing ]
|
|
regparse = (char *)endp;
|
|
MB_PTR_ADV(regparse);
|
|
|
|
// Mark end of the collection.
|
|
if (negated == true) {
|
|
EMIT(NFA_END_NEG_COLL);
|
|
} else {
|
|
EMIT(NFA_END_COLL);
|
|
}
|
|
|
|
// \_[] also matches \n but it's not negated
|
|
if (extra == NFA_ADD_NL) {
|
|
EMIT(reg_string ? NL : NFA_NEWL);
|
|
EMIT(NFA_OR);
|
|
}
|
|
|
|
return OK;
|
|
} // if exists closing ]
|
|
|
|
if (reg_strict) {
|
|
EMSG_RET_FAIL(_(e_missingbracket));
|
|
}
|
|
FALLTHROUGH;
|
|
|
|
default: {
|
|
int plen;
|
|
|
|
nfa_do_multibyte:
|
|
// plen is length of current char with composing chars
|
|
if (utf_char2len(c) != (plen = utfc_ptr2len((char *)old_regparse))
|
|
|| utf_iscomposing(c)) {
|
|
int i = 0;
|
|
|
|
// A base character plus composing characters, or just one
|
|
// or more composing characters.
|
|
// This requires creating a separate atom as if enclosing
|
|
// the characters in (), where NFA_COMPOSING is the ( and
|
|
// NFA_END_COMPOSING is the ). Note that right now we are
|
|
// building the postfix form, not the NFA itself;
|
|
// a composing char could be: a, b, c, NFA_COMPOSING
|
|
// where 'b' and 'c' are chars with codes > 256. */
|
|
while (true) {
|
|
EMIT(c);
|
|
if (i > 0) {
|
|
EMIT(NFA_CONCAT);
|
|
}
|
|
if ((i += utf_char2len(c)) >= plen) {
|
|
break;
|
|
}
|
|
c = utf_ptr2char((char *)old_regparse + i);
|
|
}
|
|
EMIT(NFA_COMPOSING);
|
|
regparse = (char *)old_regparse + plen;
|
|
} else {
|
|
c = no_Magic(c);
|
|
EMIT(c);
|
|
}
|
|
return OK;
|
|
}
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
// Parse something followed by possible [*+=].
|
|
//
|
|
// A piece is an atom, possibly followed by a multi, an indication of how many
|
|
// times the atom can be matched. Example: "a*" matches any sequence of "a"
|
|
// characters: "", "a", "aa", etc.
|
|
//
|
|
// piece ::= atom
|
|
// or atom multi
|
|
static int nfa_regpiece(void)
|
|
{
|
|
int i;
|
|
int op;
|
|
int ret;
|
|
int minval, maxval;
|
|
bool greedy = true; // Braces are prefixed with '-' ?
|
|
parse_state_T old_state;
|
|
parse_state_T new_state;
|
|
int64_t c2;
|
|
int old_post_pos;
|
|
int my_post_start;
|
|
int quest;
|
|
|
|
// Save the current parse state, so that we can use it if <atom>{m,n} is
|
|
// next.
|
|
save_parse_state(&old_state);
|
|
|
|
// store current pos in the postfix form, for \{m,n} involving 0s
|
|
my_post_start = (int)(post_ptr - post_start);
|
|
|
|
ret = nfa_regatom();
|
|
if (ret == FAIL) {
|
|
return FAIL; // cascaded error
|
|
}
|
|
op = peekchr();
|
|
if (re_multi_type(op) == NOT_MULTI) {
|
|
return OK;
|
|
}
|
|
|
|
skipchr();
|
|
switch (op) {
|
|
case Magic('*'):
|
|
EMIT(NFA_STAR);
|
|
break;
|
|
|
|
case Magic('+'):
|
|
// Trick: Normally, (a*)\+ would match the whole input "aaa". The
|
|
// first and only submatch would be "aaa". But the backtracking
|
|
// engine interprets the plus as "try matching one more time", and
|
|
// a* matches a second time at the end of the input, the empty
|
|
// string.
|
|
// The submatch will be the empty string.
|
|
//
|
|
// In order to be consistent with the old engine, we replace
|
|
// <atom>+ with <atom><atom>*
|
|
restore_parse_state(&old_state);
|
|
curchr = -1;
|
|
if (nfa_regatom() == FAIL) {
|
|
return FAIL;
|
|
}
|
|
EMIT(NFA_STAR);
|
|
EMIT(NFA_CONCAT);
|
|
skipchr(); // skip the \+
|
|
break;
|
|
|
|
case Magic('@'):
|
|
c2 = getdecchrs();
|
|
op = no_Magic(getchr());
|
|
i = 0;
|
|
switch (op) {
|
|
case '=':
|
|
// \@=
|
|
i = NFA_PREV_ATOM_NO_WIDTH;
|
|
break;
|
|
case '!':
|
|
// \@!
|
|
i = NFA_PREV_ATOM_NO_WIDTH_NEG;
|
|
break;
|
|
case '<':
|
|
op = no_Magic(getchr());
|
|
if (op == '=') {
|
|
// \@<=
|
|
i = NFA_PREV_ATOM_JUST_BEFORE;
|
|
} else if (op == '!') {
|
|
// \@<!
|
|
i = NFA_PREV_ATOM_JUST_BEFORE_NEG;
|
|
}
|
|
break;
|
|
case '>':
|
|
// \@>
|
|
i = NFA_PREV_ATOM_LIKE_PATTERN;
|
|
break;
|
|
}
|
|
if (i == 0) {
|
|
semsg(_("E869: (NFA) Unknown operator '\\@%c'"), op);
|
|
return FAIL;
|
|
}
|
|
EMIT(i);
|
|
if (i == NFA_PREV_ATOM_JUST_BEFORE
|
|
|| i == NFA_PREV_ATOM_JUST_BEFORE_NEG) {
|
|
EMIT((int)c2);
|
|
}
|
|
break;
|
|
|
|
case Magic('?'):
|
|
case Magic('='):
|
|
EMIT(NFA_QUEST);
|
|
break;
|
|
|
|
case Magic('{'):
|
|
// a{2,5} will expand to 'aaa?a?a?'
|
|
// a{-1,3} will expand to 'aa??a??', where ?? is the nongreedy
|
|
// version of '?'
|
|
// \v(ab){2,3} will expand to '(ab)(ab)(ab)?', where all the
|
|
// parenthesis have the same id
|
|
|
|
greedy = true;
|
|
c2 = peekchr();
|
|
if (c2 == '-' || c2 == Magic('-')) {
|
|
skipchr();
|
|
greedy = false;
|
|
}
|
|
if (!read_limits(&minval, &maxval)) {
|
|
EMSG_RET_FAIL(_("E870: (NFA regexp) Error reading repetition limits"));
|
|
}
|
|
|
|
// <atom>{0,inf}, <atom>{0,} and <atom>{} are equivalent to
|
|
// <atom>*
|
|
if (minval == 0 && maxval == MAX_LIMIT) {
|
|
if (greedy) {
|
|
// \{}, \{0,}
|
|
EMIT(NFA_STAR);
|
|
} else {
|
|
// \{-}, \{-0,}
|
|
EMIT(NFA_STAR_NONGREEDY);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Special case: x{0} or x{-0}
|
|
if (maxval == 0) {
|
|
// Ignore result of previous call to nfa_regatom()
|
|
post_ptr = post_start + my_post_start;
|
|
// NFA_EMPTY is 0-length and works everywhere
|
|
EMIT(NFA_EMPTY);
|
|
return OK;
|
|
}
|
|
|
|
// The engine is very inefficient (uses too many states) when the
|
|
// maximum is much larger than the minimum and when the maximum is
|
|
// large. However, when maxval is MAX_LIMIT, it is okay, as this
|
|
// will emit NFA_STAR.
|
|
// Bail out if we can use the other engine, but only, when the
|
|
// pattern does not need the NFA engine like (e.g. [[:upper:]]\{2,\}
|
|
// does not work with characters > 8 bit with the BT engine)
|
|
if ((nfa_re_flags & RE_AUTO)
|
|
&& (maxval > 500 || maxval > minval + 200)
|
|
&& (maxval != MAX_LIMIT && minval < 200)
|
|
&& !wants_nfa) {
|
|
return FAIL;
|
|
}
|
|
|
|
// Ignore previous call to nfa_regatom()
|
|
post_ptr = post_start + my_post_start;
|
|
// Save parse state after the repeated atom and the \{}
|
|
save_parse_state(&new_state);
|
|
|
|
quest = (greedy == true ? NFA_QUEST : NFA_QUEST_NONGREEDY);
|
|
for (i = 0; i < maxval; i++) {
|
|
// Goto beginning of the repeated atom
|
|
restore_parse_state(&old_state);
|
|
old_post_pos = (int)(post_ptr - post_start);
|
|
if (nfa_regatom() == FAIL) {
|
|
return FAIL;
|
|
}
|
|
// after "minval" times, atoms are optional
|
|
if (i + 1 > minval) {
|
|
if (maxval == MAX_LIMIT) {
|
|
if (greedy) {
|
|
EMIT(NFA_STAR);
|
|
} else {
|
|
EMIT(NFA_STAR_NONGREEDY);
|
|
}
|
|
} else {
|
|
EMIT(quest);
|
|
}
|
|
}
|
|
if (old_post_pos != my_post_start) {
|
|
EMIT(NFA_CONCAT);
|
|
}
|
|
if (i + 1 > minval && maxval == MAX_LIMIT) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Go to just after the repeated atom and the \{}
|
|
restore_parse_state(&new_state);
|
|
curchr = -1;
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
} // end switch
|
|
|
|
if (re_multi_type(peekchr()) != NOT_MULTI) {
|
|
// Can't have a multi follow a multi.
|
|
EMSG_RET_FAIL(_("E871: (NFA regexp) Can't have a multi follow a multi"));
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
// Parse one or more pieces, concatenated. It matches a match for the
|
|
// first piece, followed by a match for the second piece, etc. Example:
|
|
// "f[0-9]b", first matches "f", then a digit and then "b".
|
|
//
|
|
// concat ::= piece
|
|
// or piece piece
|
|
// or piece piece piece
|
|
// etc.
|
|
static int nfa_regconcat(void)
|
|
{
|
|
bool cont = true;
|
|
bool first = true;
|
|
|
|
while (cont) {
|
|
switch (peekchr()) {
|
|
case NUL:
|
|
case Magic('|'):
|
|
case Magic('&'):
|
|
case Magic(')'):
|
|
cont = false;
|
|
break;
|
|
|
|
case Magic('Z'):
|
|
regflags |= RF_ICOMBINE;
|
|
skipchr_keepstart();
|
|
break;
|
|
case Magic('c'):
|
|
regflags |= RF_ICASE;
|
|
skipchr_keepstart();
|
|
break;
|
|
case Magic('C'):
|
|
regflags |= RF_NOICASE;
|
|
skipchr_keepstart();
|
|
break;
|
|
case Magic('v'):
|
|
reg_magic = MAGIC_ALL;
|
|
skipchr_keepstart();
|
|
curchr = -1;
|
|
break;
|
|
case Magic('m'):
|
|
reg_magic = MAGIC_ON;
|
|
skipchr_keepstart();
|
|
curchr = -1;
|
|
break;
|
|
case Magic('M'):
|
|
reg_magic = MAGIC_OFF;
|
|
skipchr_keepstart();
|
|
curchr = -1;
|
|
break;
|
|
case Magic('V'):
|
|
reg_magic = MAGIC_NONE;
|
|
skipchr_keepstart();
|
|
curchr = -1;
|
|
break;
|
|
|
|
default:
|
|
if (nfa_regpiece() == FAIL) {
|
|
return FAIL;
|
|
}
|
|
if (first == false) {
|
|
EMIT(NFA_CONCAT);
|
|
} else {
|
|
first = false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
// Parse a branch, one or more concats, separated by "\&". It matches the
|
|
// last concat, but only if all the preceding concats also match at the same
|
|
// position. Examples:
|
|
// "foobeep\&..." matches "foo" in "foobeep".
|
|
// ".*Peter\&.*Bob" matches in a line containing both "Peter" and "Bob"
|
|
//
|
|
// branch ::= concat
|
|
// or concat \& concat
|
|
// or concat \& concat \& concat
|
|
// etc.
|
|
static int nfa_regbranch(void)
|
|
{
|
|
int old_post_pos;
|
|
|
|
old_post_pos = (int)(post_ptr - post_start);
|
|
|
|
// First branch, possibly the only one
|
|
if (nfa_regconcat() == FAIL) {
|
|
return FAIL;
|
|
}
|
|
|
|
// Try next concats
|
|
while (peekchr() == Magic('&')) {
|
|
skipchr();
|
|
// if concat is empty do emit a node
|
|
if (old_post_pos == (int)(post_ptr - post_start)) {
|
|
EMIT(NFA_EMPTY);
|
|
}
|
|
EMIT(NFA_NOPEN);
|
|
EMIT(NFA_PREV_ATOM_NO_WIDTH);
|
|
old_post_pos = (int)(post_ptr - post_start);
|
|
if (nfa_regconcat() == FAIL) {
|
|
return FAIL;
|
|
}
|
|
// if concat is empty do emit a node
|
|
if (old_post_pos == (int)(post_ptr - post_start)) {
|
|
EMIT(NFA_EMPTY);
|
|
}
|
|
EMIT(NFA_CONCAT);
|
|
}
|
|
|
|
// if a branch is empty, emit one node for it
|
|
if (old_post_pos == (int)(post_ptr - post_start)) {
|
|
EMIT(NFA_EMPTY);
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
/// Parse a pattern, one or more branches, separated by "\|". It matches
|
|
/// anything that matches one of the branches. Example: "foo\|beep" matches
|
|
/// "foo" and matches "beep". If more than one branch matches, the first one
|
|
/// is used.
|
|
///
|
|
/// pattern ::= branch
|
|
/// or branch \| branch
|
|
/// or branch \| branch \| branch
|
|
/// etc.
|
|
///
|
|
/// @param paren REG_NOPAREN, REG_PAREN, REG_NPAREN or REG_ZPAREN
|
|
static int nfa_reg(int paren)
|
|
{
|
|
int parno = 0;
|
|
|
|
if (paren == REG_PAREN) {
|
|
if (regnpar >= NSUBEXP) { // Too many `('
|
|
EMSG_RET_FAIL(_("E872: (NFA regexp) Too many '('"));
|
|
}
|
|
parno = regnpar++;
|
|
} else if (paren == REG_ZPAREN) {
|
|
// Make a ZOPEN node.
|
|
if (regnzpar >= NSUBEXP) {
|
|
EMSG_RET_FAIL(_("E879: (NFA regexp) Too many \\z("));
|
|
}
|
|
parno = regnzpar++;
|
|
}
|
|
|
|
if (nfa_regbranch() == FAIL) {
|
|
return FAIL; // cascaded error
|
|
}
|
|
while (peekchr() == Magic('|')) {
|
|
skipchr();
|
|
if (nfa_regbranch() == FAIL) {
|
|
return FAIL; // cascaded error
|
|
}
|
|
EMIT(NFA_OR);
|
|
}
|
|
|
|
// Check for proper termination.
|
|
if (paren != REG_NOPAREN && getchr() != Magic(')')) {
|
|
if (paren == REG_NPAREN) {
|
|
EMSG2_RET_FAIL(_(e_unmatchedpp), reg_magic == MAGIC_ALL);
|
|
} else {
|
|
EMSG2_RET_FAIL(_(e_unmatchedp), reg_magic == MAGIC_ALL);
|
|
}
|
|
} else if (paren == REG_NOPAREN && peekchr() != NUL) {
|
|
if (peekchr() == Magic(')')) {
|
|
EMSG2_RET_FAIL(_(e_unmatchedpar), reg_magic == MAGIC_ALL);
|
|
} else {
|
|
EMSG_RET_FAIL(_("E873: (NFA regexp) proper termination error"));
|
|
}
|
|
}
|
|
// Here we set the flag allowing back references to this set of
|
|
// parentheses.
|
|
if (paren == REG_PAREN) {
|
|
had_endbrace[parno] = true; // have seen the close paren
|
|
EMIT(NFA_MOPEN + parno);
|
|
} else if (paren == REG_ZPAREN) {
|
|
EMIT(NFA_ZOPEN + parno);
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
static uint8_t code[50];
|
|
|
|
static void nfa_set_code(int c)
|
|
{
|
|
int addnl = false;
|
|
|
|
if (c >= NFA_FIRST_NL && c <= NFA_LAST_NL) {
|
|
addnl = true;
|
|
c -= NFA_ADD_NL;
|
|
}
|
|
|
|
STRCPY(code, "");
|
|
switch (c) {
|
|
case NFA_MATCH:
|
|
STRCPY(code, "NFA_MATCH "); break;
|
|
case NFA_SPLIT:
|
|
STRCPY(code, "NFA_SPLIT "); break;
|
|
case NFA_CONCAT:
|
|
STRCPY(code, "NFA_CONCAT "); break;
|
|
case NFA_NEWL:
|
|
STRCPY(code, "NFA_NEWL "); break;
|
|
case NFA_ZSTART:
|
|
STRCPY(code, "NFA_ZSTART"); break;
|
|
case NFA_ZEND:
|
|
STRCPY(code, "NFA_ZEND"); break;
|
|
|
|
case NFA_BACKREF1:
|
|
STRCPY(code, "NFA_BACKREF1"); break;
|
|
case NFA_BACKREF2:
|
|
STRCPY(code, "NFA_BACKREF2"); break;
|
|
case NFA_BACKREF3:
|
|
STRCPY(code, "NFA_BACKREF3"); break;
|
|
case NFA_BACKREF4:
|
|
STRCPY(code, "NFA_BACKREF4"); break;
|
|
case NFA_BACKREF5:
|
|
STRCPY(code, "NFA_BACKREF5"); break;
|
|
case NFA_BACKREF6:
|
|
STRCPY(code, "NFA_BACKREF6"); break;
|
|
case NFA_BACKREF7:
|
|
STRCPY(code, "NFA_BACKREF7"); break;
|
|
case NFA_BACKREF8:
|
|
STRCPY(code, "NFA_BACKREF8"); break;
|
|
case NFA_BACKREF9:
|
|
STRCPY(code, "NFA_BACKREF9"); break;
|
|
case NFA_ZREF1:
|
|
STRCPY(code, "NFA_ZREF1"); break;
|
|
case NFA_ZREF2:
|
|
STRCPY(code, "NFA_ZREF2"); break;
|
|
case NFA_ZREF3:
|
|
STRCPY(code, "NFA_ZREF3"); break;
|
|
case NFA_ZREF4:
|
|
STRCPY(code, "NFA_ZREF4"); break;
|
|
case NFA_ZREF5:
|
|
STRCPY(code, "NFA_ZREF5"); break;
|
|
case NFA_ZREF6:
|
|
STRCPY(code, "NFA_ZREF6"); break;
|
|
case NFA_ZREF7:
|
|
STRCPY(code, "NFA_ZREF7"); break;
|
|
case NFA_ZREF8:
|
|
STRCPY(code, "NFA_ZREF8"); break;
|
|
case NFA_ZREF9:
|
|
STRCPY(code, "NFA_ZREF9"); break;
|
|
case NFA_SKIP:
|
|
STRCPY(code, "NFA_SKIP"); break;
|
|
|
|
case NFA_PREV_ATOM_NO_WIDTH:
|
|
STRCPY(code, "NFA_PREV_ATOM_NO_WIDTH"); break;
|
|
case NFA_PREV_ATOM_NO_WIDTH_NEG:
|
|
STRCPY(code, "NFA_PREV_ATOM_NO_WIDTH_NEG"); break;
|
|
case NFA_PREV_ATOM_JUST_BEFORE:
|
|
STRCPY(code, "NFA_PREV_ATOM_JUST_BEFORE"); break;
|
|
case NFA_PREV_ATOM_JUST_BEFORE_NEG:
|
|
STRCPY(code, "NFA_PREV_ATOM_JUST_BEFORE_NEG"); break;
|
|
case NFA_PREV_ATOM_LIKE_PATTERN:
|
|
STRCPY(code, "NFA_PREV_ATOM_LIKE_PATTERN"); break;
|
|
|
|
case NFA_NOPEN:
|
|
STRCPY(code, "NFA_NOPEN"); break;
|
|
case NFA_NCLOSE:
|
|
STRCPY(code, "NFA_NCLOSE"); break;
|
|
case NFA_START_INVISIBLE:
|
|
STRCPY(code, "NFA_START_INVISIBLE"); break;
|
|
case NFA_START_INVISIBLE_FIRST:
|
|
STRCPY(code, "NFA_START_INVISIBLE_FIRST"); break;
|
|
case NFA_START_INVISIBLE_NEG:
|
|
STRCPY(code, "NFA_START_INVISIBLE_NEG"); break;
|
|
case NFA_START_INVISIBLE_NEG_FIRST:
|
|
STRCPY(code, "NFA_START_INVISIBLE_NEG_FIRST"); break;
|
|
case NFA_START_INVISIBLE_BEFORE:
|
|
STRCPY(code, "NFA_START_INVISIBLE_BEFORE"); break;
|
|
case NFA_START_INVISIBLE_BEFORE_FIRST:
|
|
STRCPY(code, "NFA_START_INVISIBLE_BEFORE_FIRST"); break;
|
|
case NFA_START_INVISIBLE_BEFORE_NEG:
|
|
STRCPY(code, "NFA_START_INVISIBLE_BEFORE_NEG"); break;
|
|
case NFA_START_INVISIBLE_BEFORE_NEG_FIRST:
|
|
STRCPY(code, "NFA_START_INVISIBLE_BEFORE_NEG_FIRST"); break;
|
|
case NFA_START_PATTERN:
|
|
STRCPY(code, "NFA_START_PATTERN"); break;
|
|
case NFA_END_INVISIBLE:
|
|
STRCPY(code, "NFA_END_INVISIBLE"); break;
|
|
case NFA_END_INVISIBLE_NEG:
|
|
STRCPY(code, "NFA_END_INVISIBLE_NEG"); break;
|
|
case NFA_END_PATTERN:
|
|
STRCPY(code, "NFA_END_PATTERN"); break;
|
|
|
|
case NFA_COMPOSING:
|
|
STRCPY(code, "NFA_COMPOSING"); break;
|
|
case NFA_END_COMPOSING:
|
|
STRCPY(code, "NFA_END_COMPOSING"); break;
|
|
case NFA_OPT_CHARS:
|
|
STRCPY(code, "NFA_OPT_CHARS"); break;
|
|
|
|
case NFA_MOPEN:
|
|
case NFA_MOPEN1:
|
|
case NFA_MOPEN2:
|
|
case NFA_MOPEN3:
|
|
case NFA_MOPEN4:
|
|
case NFA_MOPEN5:
|
|
case NFA_MOPEN6:
|
|
case NFA_MOPEN7:
|
|
case NFA_MOPEN8:
|
|
case NFA_MOPEN9:
|
|
STRCPY(code, "NFA_MOPEN(x)");
|
|
code[10] = c - NFA_MOPEN + '0';
|
|
break;
|
|
case NFA_MCLOSE:
|
|
case NFA_MCLOSE1:
|
|
case NFA_MCLOSE2:
|
|
case NFA_MCLOSE3:
|
|
case NFA_MCLOSE4:
|
|
case NFA_MCLOSE5:
|
|
case NFA_MCLOSE6:
|
|
case NFA_MCLOSE7:
|
|
case NFA_MCLOSE8:
|
|
case NFA_MCLOSE9:
|
|
STRCPY(code, "NFA_MCLOSE(x)");
|
|
code[11] = c - NFA_MCLOSE + '0';
|
|
break;
|
|
case NFA_ZOPEN:
|
|
case NFA_ZOPEN1:
|
|
case NFA_ZOPEN2:
|
|
case NFA_ZOPEN3:
|
|
case NFA_ZOPEN4:
|
|
case NFA_ZOPEN5:
|
|
case NFA_ZOPEN6:
|
|
case NFA_ZOPEN7:
|
|
case NFA_ZOPEN8:
|
|
case NFA_ZOPEN9:
|
|
STRCPY(code, "NFA_ZOPEN(x)");
|
|
code[10] = c - NFA_ZOPEN + '0';
|
|
break;
|
|
case NFA_ZCLOSE:
|
|
case NFA_ZCLOSE1:
|
|
case NFA_ZCLOSE2:
|
|
case NFA_ZCLOSE3:
|
|
case NFA_ZCLOSE4:
|
|
case NFA_ZCLOSE5:
|
|
case NFA_ZCLOSE6:
|
|
case NFA_ZCLOSE7:
|
|
case NFA_ZCLOSE8:
|
|
case NFA_ZCLOSE9:
|
|
STRCPY(code, "NFA_ZCLOSE(x)");
|
|
code[11] = c - NFA_ZCLOSE + '0';
|
|
break;
|
|
case NFA_EOL:
|
|
STRCPY(code, "NFA_EOL "); break;
|
|
case NFA_BOL:
|
|
STRCPY(code, "NFA_BOL "); break;
|
|
case NFA_EOW:
|
|
STRCPY(code, "NFA_EOW "); break;
|
|
case NFA_BOW:
|
|
STRCPY(code, "NFA_BOW "); break;
|
|
case NFA_EOF:
|
|
STRCPY(code, "NFA_EOF "); break;
|
|
case NFA_BOF:
|
|
STRCPY(code, "NFA_BOF "); break;
|
|
case NFA_LNUM:
|
|
STRCPY(code, "NFA_LNUM "); break;
|
|
case NFA_LNUM_GT:
|
|
STRCPY(code, "NFA_LNUM_GT "); break;
|
|
case NFA_LNUM_LT:
|
|
STRCPY(code, "NFA_LNUM_LT "); break;
|
|
case NFA_COL:
|
|
STRCPY(code, "NFA_COL "); break;
|
|
case NFA_COL_GT:
|
|
STRCPY(code, "NFA_COL_GT "); break;
|
|
case NFA_COL_LT:
|
|
STRCPY(code, "NFA_COL_LT "); break;
|
|
case NFA_VCOL:
|
|
STRCPY(code, "NFA_VCOL "); break;
|
|
case NFA_VCOL_GT:
|
|
STRCPY(code, "NFA_VCOL_GT "); break;
|
|
case NFA_VCOL_LT:
|
|
STRCPY(code, "NFA_VCOL_LT "); break;
|
|
case NFA_MARK:
|
|
STRCPY(code, "NFA_MARK "); break;
|
|
case NFA_MARK_GT:
|
|
STRCPY(code, "NFA_MARK_GT "); break;
|
|
case NFA_MARK_LT:
|
|
STRCPY(code, "NFA_MARK_LT "); break;
|
|
case NFA_CURSOR:
|
|
STRCPY(code, "NFA_CURSOR "); break;
|
|
case NFA_VISUAL:
|
|
STRCPY(code, "NFA_VISUAL "); break;
|
|
case NFA_ANY_COMPOSING:
|
|
STRCPY(code, "NFA_ANY_COMPOSING "); break;
|
|
|
|
case NFA_STAR:
|
|
STRCPY(code, "NFA_STAR "); break;
|
|
case NFA_STAR_NONGREEDY:
|
|
STRCPY(code, "NFA_STAR_NONGREEDY "); break;
|
|
case NFA_QUEST:
|
|
STRCPY(code, "NFA_QUEST"); break;
|
|
case NFA_QUEST_NONGREEDY:
|
|
STRCPY(code, "NFA_QUEST_NON_GREEDY"); break;
|
|
case NFA_EMPTY:
|
|
STRCPY(code, "NFA_EMPTY"); break;
|
|
case NFA_OR:
|
|
STRCPY(code, "NFA_OR"); break;
|
|
|
|
case NFA_START_COLL:
|
|
STRCPY(code, "NFA_START_COLL"); break;
|
|
case NFA_END_COLL:
|
|
STRCPY(code, "NFA_END_COLL"); break;
|
|
case NFA_START_NEG_COLL:
|
|
STRCPY(code, "NFA_START_NEG_COLL"); break;
|
|
case NFA_END_NEG_COLL:
|
|
STRCPY(code, "NFA_END_NEG_COLL"); break;
|
|
case NFA_RANGE:
|
|
STRCPY(code, "NFA_RANGE"); break;
|
|
case NFA_RANGE_MIN:
|
|
STRCPY(code, "NFA_RANGE_MIN"); break;
|
|
case NFA_RANGE_MAX:
|
|
STRCPY(code, "NFA_RANGE_MAX"); break;
|
|
|
|
case NFA_CLASS_ALNUM:
|
|
STRCPY(code, "NFA_CLASS_ALNUM"); break;
|
|
case NFA_CLASS_ALPHA:
|
|
STRCPY(code, "NFA_CLASS_ALPHA"); break;
|
|
case NFA_CLASS_BLANK:
|
|
STRCPY(code, "NFA_CLASS_BLANK"); break;
|
|
case NFA_CLASS_CNTRL:
|
|
STRCPY(code, "NFA_CLASS_CNTRL"); break;
|
|
case NFA_CLASS_DIGIT:
|
|
STRCPY(code, "NFA_CLASS_DIGIT"); break;
|
|
case NFA_CLASS_GRAPH:
|
|
STRCPY(code, "NFA_CLASS_GRAPH"); break;
|
|
case NFA_CLASS_LOWER:
|
|
STRCPY(code, "NFA_CLASS_LOWER"); break;
|
|
case NFA_CLASS_PRINT:
|
|
STRCPY(code, "NFA_CLASS_PRINT"); break;
|
|
case NFA_CLASS_PUNCT:
|
|
STRCPY(code, "NFA_CLASS_PUNCT"); break;
|
|
case NFA_CLASS_SPACE:
|
|
STRCPY(code, "NFA_CLASS_SPACE"); break;
|
|
case NFA_CLASS_UPPER:
|
|
STRCPY(code, "NFA_CLASS_UPPER"); break;
|
|
case NFA_CLASS_XDIGIT:
|
|
STRCPY(code, "NFA_CLASS_XDIGIT"); break;
|
|
case NFA_CLASS_TAB:
|
|
STRCPY(code, "NFA_CLASS_TAB"); break;
|
|
case NFA_CLASS_RETURN:
|
|
STRCPY(code, "NFA_CLASS_RETURN"); break;
|
|
case NFA_CLASS_BACKSPACE:
|
|
STRCPY(code, "NFA_CLASS_BACKSPACE"); break;
|
|
case NFA_CLASS_ESCAPE:
|
|
STRCPY(code, "NFA_CLASS_ESCAPE"); break;
|
|
case NFA_CLASS_IDENT:
|
|
STRCPY(code, "NFA_CLASS_IDENT"); break;
|
|
case NFA_CLASS_KEYWORD:
|
|
STRCPY(code, "NFA_CLASS_KEYWORD"); break;
|
|
case NFA_CLASS_FNAME:
|
|
STRCPY(code, "NFA_CLASS_FNAME"); break;
|
|
|
|
case NFA_ANY:
|
|
STRCPY(code, "NFA_ANY"); break;
|
|
case NFA_IDENT:
|
|
STRCPY(code, "NFA_IDENT"); break;
|
|
case NFA_SIDENT:
|
|
STRCPY(code, "NFA_SIDENT"); break;
|
|
case NFA_KWORD:
|
|
STRCPY(code, "NFA_KWORD"); break;
|
|
case NFA_SKWORD:
|
|
STRCPY(code, "NFA_SKWORD"); break;
|
|
case NFA_FNAME:
|
|
STRCPY(code, "NFA_FNAME"); break;
|
|
case NFA_SFNAME:
|
|
STRCPY(code, "NFA_SFNAME"); break;
|
|
case NFA_PRINT:
|
|
STRCPY(code, "NFA_PRINT"); break;
|
|
case NFA_SPRINT:
|
|
STRCPY(code, "NFA_SPRINT"); break;
|
|
case NFA_WHITE:
|
|
STRCPY(code, "NFA_WHITE"); break;
|
|
case NFA_NWHITE:
|
|
STRCPY(code, "NFA_NWHITE"); break;
|
|
case NFA_DIGIT:
|
|
STRCPY(code, "NFA_DIGIT"); break;
|
|
case NFA_NDIGIT:
|
|
STRCPY(code, "NFA_NDIGIT"); break;
|
|
case NFA_HEX:
|
|
STRCPY(code, "NFA_HEX"); break;
|
|
case NFA_NHEX:
|
|
STRCPY(code, "NFA_NHEX"); break;
|
|
case NFA_OCTAL:
|
|
STRCPY(code, "NFA_OCTAL"); break;
|
|
case NFA_NOCTAL:
|
|
STRCPY(code, "NFA_NOCTAL"); break;
|
|
case NFA_WORD:
|
|
STRCPY(code, "NFA_WORD"); break;
|
|
case NFA_NWORD:
|
|
STRCPY(code, "NFA_NWORD"); break;
|
|
case NFA_HEAD:
|
|
STRCPY(code, "NFA_HEAD"); break;
|
|
case NFA_NHEAD:
|
|
STRCPY(code, "NFA_NHEAD"); break;
|
|
case NFA_ALPHA:
|
|
STRCPY(code, "NFA_ALPHA"); break;
|
|
case NFA_NALPHA:
|
|
STRCPY(code, "NFA_NALPHA"); break;
|
|
case NFA_LOWER:
|
|
STRCPY(code, "NFA_LOWER"); break;
|
|
case NFA_NLOWER:
|
|
STRCPY(code, "NFA_NLOWER"); break;
|
|
case NFA_UPPER:
|
|
STRCPY(code, "NFA_UPPER"); break;
|
|
case NFA_NUPPER:
|
|
STRCPY(code, "NFA_NUPPER"); break;
|
|
case NFA_LOWER_IC:
|
|
STRCPY(code, "NFA_LOWER_IC"); break;
|
|
case NFA_NLOWER_IC:
|
|
STRCPY(code, "NFA_NLOWER_IC"); break;
|
|
case NFA_UPPER_IC:
|
|
STRCPY(code, "NFA_UPPER_IC"); break;
|
|
case NFA_NUPPER_IC:
|
|
STRCPY(code, "NFA_NUPPER_IC"); break;
|
|
|
|
default:
|
|
STRCPY(code, "CHAR(x)");
|
|
code[5] = c;
|
|
}
|
|
|
|
if (addnl == true) {
|
|
STRCAT(code, " + NEWLINE ");
|
|
}
|
|
}
|
|
|
|
static FILE *log_fd;
|
|
static const uint8_t e_log_open_failed[] =
|
|
N_("Could not open temporary log file for writing, displaying on stderr... ");
|
|
|
|
// Print the postfix notation of the current regexp.
|
|
static void nfa_postfix_dump(uint8_t *expr, int retval)
|
|
{
|
|
int *p;
|
|
FILE *f;
|
|
|
|
f = fopen(NFA_REGEXP_DUMP_LOG, "a");
|
|
if (f == NULL) {
|
|
return;
|
|
}
|
|
|
|
fprintf(f, "\n-------------------------\n");
|
|
if (retval == FAIL) {
|
|
fprintf(f, ">>> NFA engine failed... \n");
|
|
} else if (retval == OK) {
|
|
fprintf(f, ">>> NFA engine succeeded !\n");
|
|
}
|
|
fprintf(f, "Regexp: \"%s\"\nPostfix notation (char): \"", expr);
|
|
for (p = post_start; *p && p < post_ptr; p++) {
|
|
nfa_set_code(*p);
|
|
fprintf(f, "%s, ", code);
|
|
}
|
|
fprintf(f, "\"\nPostfix notation (int): ");
|
|
for (p = post_start; *p && p < post_ptr; p++) {
|
|
fprintf(f, "%d ", *p);
|
|
}
|
|
fprintf(f, "\n\n");
|
|
fclose(f);
|
|
}
|
|
|
|
// Print the NFA starting with a root node "state".
|
|
static void nfa_print_state(FILE *debugf, nfa_state_T *state)
|
|
{
|
|
garray_T indent;
|
|
|
|
ga_init(&indent, 1, 64);
|
|
ga_append(&indent, '\0');
|
|
nfa_print_state2(debugf, state, &indent);
|
|
ga_clear(&indent);
|
|
}
|
|
|
|
static void nfa_print_state2(FILE *debugf, nfa_state_T *state, garray_T *indent)
|
|
{
|
|
uint8_t *p;
|
|
|
|
if (state == NULL) {
|
|
return;
|
|
}
|
|
|
|
fprintf(debugf, "(%2d)", abs(state->id));
|
|
|
|
// Output indent
|
|
p = (uint8_t *)indent->ga_data;
|
|
if (indent->ga_len >= 3) {
|
|
int last = indent->ga_len - 3;
|
|
uint8_t save[2];
|
|
|
|
strncpy(save, &p[last], 2); // NOLINT(runtime/printf)
|
|
memcpy(&p[last], "+-", 2);
|
|
fprintf(debugf, " %s", p);
|
|
strncpy(&p[last], save, 2); // NOLINT(runtime/printf)
|
|
} else {
|
|
fprintf(debugf, " %s", p);
|
|
}
|
|
|
|
nfa_set_code(state->c);
|
|
fprintf(debugf, "%s (%d) (id=%d) val=%d\n",
|
|
code,
|
|
state->c,
|
|
abs(state->id),
|
|
state->val);
|
|
if (state->id < 0) {
|
|
return;
|
|
}
|
|
|
|
state->id = abs(state->id) * -1;
|
|
|
|
// grow indent for state->out
|
|
indent->ga_len -= 1;
|
|
if (state->out1) {
|
|
ga_concat(indent, (uint8_t *)"| ");
|
|
} else {
|
|
ga_concat(indent, (uint8_t *)" ");
|
|
}
|
|
ga_append(indent, NUL);
|
|
|
|
nfa_print_state2(debugf, state->out, indent);
|
|
|
|
// replace last part of indent for state->out1
|
|
indent->ga_len -= 3;
|
|
ga_concat(indent, (uint8_t *)" ");
|
|
ga_append(indent, NUL);
|
|
|
|
nfa_print_state2(debugf, state->out1, indent);
|
|
|
|
// shrink indent
|
|
indent->ga_len -= 3;
|
|
ga_append(indent, NUL);
|
|
}
|
|
|
|
// Print the NFA state machine.
|
|
static void nfa_dump(nfa_regprog_T *prog)
|
|
{
|
|
FILE *debugf = fopen(NFA_REGEXP_DUMP_LOG, "a");
|
|
|
|
if (debugf == NULL) {
|
|
return;
|
|
}
|
|
|
|
nfa_print_state(debugf, prog->start);
|
|
|
|
if (prog->reganch) {
|
|
fprintf(debugf, "reganch: %d\n", prog->reganch);
|
|
}
|
|
if (prog->regstart != NUL) {
|
|
fprintf(debugf, "regstart: %c (decimal: %d)\n",
|
|
prog->regstart, prog->regstart);
|
|
}
|
|
if (prog->match_text != NULL) {
|
|
fprintf(debugf, "match_text: \"%s\"\n", prog->match_text);
|
|
}
|
|
|
|
fclose(debugf);
|
|
}
|
|
#endif // REGEXP_DEBUG
|
|
|
|
// Parse r.e. @expr and convert it into postfix form.
|
|
// Return the postfix string on success, NULL otherwise.
|
|
static int *re2post(void)
|
|
{
|
|
if (nfa_reg(REG_NOPAREN) == FAIL) {
|
|
return NULL;
|
|
}
|
|
EMIT(NFA_MOPEN);
|
|
return post_start;
|
|
}
|
|
|
|
// NB. Some of the code below is inspired by Russ's.
|
|
|
|
// Represents an NFA state plus zero or one or two arrows exiting.
|
|
// if c == MATCH, no arrows out; matching state.
|
|
// If c == SPLIT, unlabeled arrows to out and out1 (if != NULL).
|
|
// If c < 256, labeled arrow with character c to out.
|
|
|
|
static nfa_state_T *state_ptr; // points to nfa_prog->state
|
|
|
|
// Allocate and initialize nfa_state_T.
|
|
static nfa_state_T *alloc_state(int c, nfa_state_T *out, nfa_state_T *out1)
|
|
{
|
|
nfa_state_T *s;
|
|
|
|
if (istate >= nstate) {
|
|
return NULL;
|
|
}
|
|
|
|
s = &state_ptr[istate++];
|
|
|
|
s->c = c;
|
|
s->out = out;
|
|
s->out1 = out1;
|
|
s->val = 0;
|
|
|
|
s->id = istate;
|
|
s->lastlist[0] = 0;
|
|
s->lastlist[1] = 0;
|
|
|
|
return s;
|
|
}
|
|
|
|
// A partially built NFA without the matching state filled in.
|
|
// Frag_T.start points at the start state.
|
|
// Frag_T.out is a list of places that need to be set to the
|
|
// next state for this fragment.
|
|
|
|
// Initialize a Frag_T struct and return it.
|
|
static Frag_T frag(nfa_state_T *start, Ptrlist *out)
|
|
{
|
|
Frag_T n;
|
|
|
|
n.start = start;
|
|
n.out = out;
|
|
return n;
|
|
}
|
|
|
|
// Create singleton list containing just outp.
|
|
static Ptrlist *list1(nfa_state_T **outp)
|
|
{
|
|
Ptrlist *l;
|
|
|
|
l = (Ptrlist *)outp;
|
|
l->next = NULL;
|
|
return l;
|
|
}
|
|
|
|
// Patch the list of states at out to point to start.
|
|
static void patch(Ptrlist *l, nfa_state_T *s)
|
|
{
|
|
Ptrlist *next;
|
|
|
|
for (; l; l = next) {
|
|
next = l->next;
|
|
l->s = s;
|
|
}
|
|
}
|
|
|
|
// Join the two lists l1 and l2, returning the combination.
|
|
static Ptrlist *append(Ptrlist *l1, Ptrlist *l2)
|
|
{
|
|
Ptrlist *oldl1;
|
|
|
|
oldl1 = l1;
|
|
while (l1->next) {
|
|
l1 = l1->next;
|
|
}
|
|
l1->next = l2;
|
|
return oldl1;
|
|
}
|
|
|
|
// Stack used for transforming postfix form into NFA.
|
|
static Frag_T empty;
|
|
|
|
static void st_error(int *postfix, int *end, int *p)
|
|
{
|
|
#ifdef NFA_REGEXP_ERROR_LOG
|
|
FILE *df;
|
|
int *p2;
|
|
|
|
df = fopen(NFA_REGEXP_ERROR_LOG, "a");
|
|
if (df) {
|
|
fprintf(df, "Error popping the stack!\n");
|
|
# ifdef REGEXP_DEBUG
|
|
fprintf(df, "Current regexp is \"%s\"\n", nfa_regengine.expr);
|
|
# endif
|
|
fprintf(df, "Postfix form is: ");
|
|
# ifdef REGEXP_DEBUG
|
|
for (p2 = postfix; p2 < end; p2++) {
|
|
nfa_set_code(*p2);
|
|
fprintf(df, "%s, ", code);
|
|
}
|
|
nfa_set_code(*p);
|
|
fprintf(df, "\nCurrent position is: ");
|
|
for (p2 = postfix; p2 <= p; p2++) {
|
|
nfa_set_code(*p2);
|
|
fprintf(df, "%s, ", code);
|
|
}
|
|
# else
|
|
for (p2 = postfix; p2 < end; p2++) {
|
|
fprintf(df, "%d, ", *p2);
|
|
}
|
|
fprintf(df, "\nCurrent position is: ");
|
|
for (p2 = postfix; p2 <= p; p2++) {
|
|
fprintf(df, "%d, ", *p2);
|
|
}
|
|
# endif
|
|
fprintf(df, "\n--------------------------\n");
|
|
fclose(df);
|
|
}
|
|
#endif
|
|
emsg(_("E874: (NFA) Could not pop the stack!"));
|
|
}
|
|
|
|
// Push an item onto the stack.
|
|
static void st_push(Frag_T s, Frag_T **p, Frag_T *stack_end)
|
|
{
|
|
Frag_T *stackp = *p;
|
|
|
|
if (stackp >= stack_end) {
|
|
return;
|
|
}
|
|
*stackp = s;
|
|
*p = *p + 1;
|
|
}
|
|
|
|
// Pop an item from the stack.
|
|
static Frag_T st_pop(Frag_T **p, Frag_T *stack)
|
|
{
|
|
Frag_T *stackp;
|
|
|
|
*p = *p - 1;
|
|
stackp = *p;
|
|
if (stackp < stack) {
|
|
return empty;
|
|
}
|
|
return **p;
|
|
}
|
|
|
|
// Estimate the maximum byte length of anything matching "state".
|
|
// When unknown or unlimited return -1.
|
|
static int nfa_max_width(nfa_state_T *startstate, int depth)
|
|
{
|
|
int l, r;
|
|
nfa_state_T *state = startstate;
|
|
int len = 0;
|
|
|
|
// detect looping in a NFA_SPLIT
|
|
if (depth > 4) {
|
|
return -1;
|
|
}
|
|
|
|
while (state != NULL) {
|
|
switch (state->c) {
|
|
case NFA_END_INVISIBLE:
|
|
case NFA_END_INVISIBLE_NEG:
|
|
// the end, return what we have
|
|
return len;
|
|
|
|
case NFA_SPLIT:
|
|
// two alternatives, use the maximum
|
|
l = nfa_max_width(state->out, depth + 1);
|
|
r = nfa_max_width(state->out1, depth + 1);
|
|
if (l < 0 || r < 0) {
|
|
return -1;
|
|
}
|
|
return len + (l > r ? l : r);
|
|
|
|
case NFA_ANY:
|
|
case NFA_START_COLL:
|
|
case NFA_START_NEG_COLL:
|
|
// Matches some character, including composing chars.
|
|
len += MB_MAXBYTES;
|
|
if (state->c != NFA_ANY) {
|
|
// Skip over the characters.
|
|
state = state->out1->out;
|
|
continue;
|
|
}
|
|
break;
|
|
|
|
case NFA_DIGIT:
|
|
case NFA_WHITE:
|
|
case NFA_HEX:
|
|
case NFA_OCTAL:
|
|
// ascii
|
|
len++;
|
|
break;
|
|
|
|
case NFA_IDENT:
|
|
case NFA_SIDENT:
|
|
case NFA_KWORD:
|
|
case NFA_SKWORD:
|
|
case NFA_FNAME:
|
|
case NFA_SFNAME:
|
|
case NFA_PRINT:
|
|
case NFA_SPRINT:
|
|
case NFA_NWHITE:
|
|
case NFA_NDIGIT:
|
|
case NFA_NHEX:
|
|
case NFA_NOCTAL:
|
|
case NFA_WORD:
|
|
case NFA_NWORD:
|
|
case NFA_HEAD:
|
|
case NFA_NHEAD:
|
|
case NFA_ALPHA:
|
|
case NFA_NALPHA:
|
|
case NFA_LOWER:
|
|
case NFA_NLOWER:
|
|
case NFA_UPPER:
|
|
case NFA_NUPPER:
|
|
case NFA_LOWER_IC:
|
|
case NFA_NLOWER_IC:
|
|
case NFA_UPPER_IC:
|
|
case NFA_NUPPER_IC:
|
|
case NFA_ANY_COMPOSING:
|
|
// possibly non-ascii
|
|
len += 3;
|
|
break;
|
|
|
|
case NFA_START_INVISIBLE:
|
|
case NFA_START_INVISIBLE_NEG:
|
|
case NFA_START_INVISIBLE_BEFORE:
|
|
case NFA_START_INVISIBLE_BEFORE_NEG:
|
|
// zero-width, out1 points to the END state
|
|
state = state->out1->out;
|
|
continue;
|
|
|
|
case NFA_BACKREF1:
|
|
case NFA_BACKREF2:
|
|
case NFA_BACKREF3:
|
|
case NFA_BACKREF4:
|
|
case NFA_BACKREF5:
|
|
case NFA_BACKREF6:
|
|
case NFA_BACKREF7:
|
|
case NFA_BACKREF8:
|
|
case NFA_BACKREF9:
|
|
case NFA_ZREF1:
|
|
case NFA_ZREF2:
|
|
case NFA_ZREF3:
|
|
case NFA_ZREF4:
|
|
case NFA_ZREF5:
|
|
case NFA_ZREF6:
|
|
case NFA_ZREF7:
|
|
case NFA_ZREF8:
|
|
case NFA_ZREF9:
|
|
case NFA_NEWL:
|
|
case NFA_SKIP:
|
|
// unknown width
|
|
return -1;
|
|
|
|
case NFA_BOL:
|
|
case NFA_EOL:
|
|
case NFA_BOF:
|
|
case NFA_EOF:
|
|
case NFA_BOW:
|
|
case NFA_EOW:
|
|
case NFA_MOPEN:
|
|
case NFA_MOPEN1:
|
|
case NFA_MOPEN2:
|
|
case NFA_MOPEN3:
|
|
case NFA_MOPEN4:
|
|
case NFA_MOPEN5:
|
|
case NFA_MOPEN6:
|
|
case NFA_MOPEN7:
|
|
case NFA_MOPEN8:
|
|
case NFA_MOPEN9:
|
|
case NFA_ZOPEN:
|
|
case NFA_ZOPEN1:
|
|
case NFA_ZOPEN2:
|
|
case NFA_ZOPEN3:
|
|
case NFA_ZOPEN4:
|
|
case NFA_ZOPEN5:
|
|
case NFA_ZOPEN6:
|
|
case NFA_ZOPEN7:
|
|
case NFA_ZOPEN8:
|
|
case NFA_ZOPEN9:
|
|
case NFA_ZCLOSE:
|
|
case NFA_ZCLOSE1:
|
|
case NFA_ZCLOSE2:
|
|
case NFA_ZCLOSE3:
|
|
case NFA_ZCLOSE4:
|
|
case NFA_ZCLOSE5:
|
|
case NFA_ZCLOSE6:
|
|
case NFA_ZCLOSE7:
|
|
case NFA_ZCLOSE8:
|
|
case NFA_ZCLOSE9:
|
|
case NFA_MCLOSE:
|
|
case NFA_MCLOSE1:
|
|
case NFA_MCLOSE2:
|
|
case NFA_MCLOSE3:
|
|
case NFA_MCLOSE4:
|
|
case NFA_MCLOSE5:
|
|
case NFA_MCLOSE6:
|
|
case NFA_MCLOSE7:
|
|
case NFA_MCLOSE8:
|
|
case NFA_MCLOSE9:
|
|
case NFA_NOPEN:
|
|
case NFA_NCLOSE:
|
|
|
|
case NFA_LNUM_GT:
|
|
case NFA_LNUM_LT:
|
|
case NFA_COL_GT:
|
|
case NFA_COL_LT:
|
|
case NFA_VCOL_GT:
|
|
case NFA_VCOL_LT:
|
|
case NFA_MARK_GT:
|
|
case NFA_MARK_LT:
|
|
case NFA_VISUAL:
|
|
case NFA_LNUM:
|
|
case NFA_CURSOR:
|
|
case NFA_COL:
|
|
case NFA_VCOL:
|
|
case NFA_MARK:
|
|
|
|
case NFA_ZSTART:
|
|
case NFA_ZEND:
|
|
case NFA_OPT_CHARS:
|
|
case NFA_EMPTY:
|
|
case NFA_START_PATTERN:
|
|
case NFA_END_PATTERN:
|
|
case NFA_COMPOSING:
|
|
case NFA_END_COMPOSING:
|
|
// zero-width
|
|
break;
|
|
|
|
default:
|
|
if (state->c < 0) {
|
|
// don't know what this is
|
|
return -1;
|
|
}
|
|
// normal character
|
|
len += utf_char2len(state->c);
|
|
break;
|
|
}
|
|
|
|
// normal way to continue
|
|
state = state->out;
|
|
}
|
|
|
|
// unrecognized, "cannot happen"
|
|
return -1;
|
|
}
|
|
|
|
// Convert a postfix form into its equivalent NFA.
|
|
// Return the NFA start state on success, NULL otherwise.
|
|
static nfa_state_T *post2nfa(int *postfix, int *end, int nfa_calc_size)
|
|
{
|
|
int *p;
|
|
int mopen;
|
|
int mclose;
|
|
Frag_T *stack = NULL;
|
|
Frag_T *stackp = NULL;
|
|
Frag_T *stack_end = NULL;
|
|
Frag_T e1;
|
|
Frag_T e2;
|
|
Frag_T e;
|
|
nfa_state_T *s;
|
|
nfa_state_T *s1;
|
|
nfa_state_T *matchstate;
|
|
nfa_state_T *ret = NULL;
|
|
|
|
if (postfix == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
#define PUSH(s) st_push((s), &stackp, stack_end)
|
|
#define POP() st_pop(&stackp, stack); \
|
|
if (stackp < stack) { \
|
|
st_error(postfix, end, p); \
|
|
xfree(stack); \
|
|
return NULL; \
|
|
}
|
|
|
|
if (nfa_calc_size == false) {
|
|
// Allocate space for the stack. Max states on the stack: "nstate".
|
|
stack = xmalloc((size_t)(nstate + 1) * sizeof(Frag_T));
|
|
stackp = stack;
|
|
stack_end = stack + (nstate + 1);
|
|
}
|
|
|
|
for (p = postfix; p < end; p++) {
|
|
switch (*p) {
|
|
case NFA_CONCAT:
|
|
// Concatenation.
|
|
// Pay attention: this operator does not exist in the r.e. itself
|
|
// (it is implicit, really). It is added when r.e. is translated
|
|
// to postfix form in re2post().
|
|
if (nfa_calc_size == true) {
|
|
// nstate += 0;
|
|
break;
|
|
}
|
|
e2 = POP();
|
|
e1 = POP();
|
|
patch(e1.out, e2.start);
|
|
PUSH(frag(e1.start, e2.out));
|
|
break;
|
|
|
|
case NFA_OR:
|
|
// Alternation
|
|
if (nfa_calc_size == true) {
|
|
nstate++;
|
|
break;
|
|
}
|
|
e2 = POP();
|
|
e1 = POP();
|
|
s = alloc_state(NFA_SPLIT, e1.start, e2.start);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
PUSH(frag(s, append(e1.out, e2.out)));
|
|
break;
|
|
|
|
case NFA_STAR:
|
|
// Zero or more, prefer more
|
|
if (nfa_calc_size == true) {
|
|
nstate++;
|
|
break;
|
|
}
|
|
e = POP();
|
|
s = alloc_state(NFA_SPLIT, e.start, NULL);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
patch(e.out, s);
|
|
PUSH(frag(s, list1(&s->out1)));
|
|
break;
|
|
|
|
case NFA_STAR_NONGREEDY:
|
|
// Zero or more, prefer zero
|
|
if (nfa_calc_size == true) {
|
|
nstate++;
|
|
break;
|
|
}
|
|
e = POP();
|
|
s = alloc_state(NFA_SPLIT, NULL, e.start);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
patch(e.out, s);
|
|
PUSH(frag(s, list1(&s->out)));
|
|
break;
|
|
|
|
case NFA_QUEST:
|
|
// one or zero atoms=> greedy match
|
|
if (nfa_calc_size == true) {
|
|
nstate++;
|
|
break;
|
|
}
|
|
e = POP();
|
|
s = alloc_state(NFA_SPLIT, e.start, NULL);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
PUSH(frag(s, append(e.out, list1(&s->out1))));
|
|
break;
|
|
|
|
case NFA_QUEST_NONGREEDY:
|
|
// zero or one atoms => non-greedy match
|
|
if (nfa_calc_size == true) {
|
|
nstate++;
|
|
break;
|
|
}
|
|
e = POP();
|
|
s = alloc_state(NFA_SPLIT, NULL, e.start);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
PUSH(frag(s, append(e.out, list1(&s->out))));
|
|
break;
|
|
|
|
case NFA_END_COLL:
|
|
case NFA_END_NEG_COLL:
|
|
// On the stack is the sequence starting with NFA_START_COLL or
|
|
// NFA_START_NEG_COLL and all possible characters. Patch it to
|
|
// add the output to the start.
|
|
if (nfa_calc_size == true) {
|
|
nstate++;
|
|
break;
|
|
}
|
|
e = POP();
|
|
s = alloc_state(NFA_END_COLL, NULL, NULL);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
patch(e.out, s);
|
|
e.start->out1 = s;
|
|
PUSH(frag(e.start, list1(&s->out)));
|
|
break;
|
|
|
|
case NFA_RANGE:
|
|
// Before this are two characters, the low and high end of a
|
|
// range. Turn them into two states with MIN and MAX.
|
|
if (nfa_calc_size == true) {
|
|
// nstate += 0;
|
|
break;
|
|
}
|
|
e2 = POP();
|
|
e1 = POP();
|
|
e2.start->val = e2.start->c;
|
|
e2.start->c = NFA_RANGE_MAX;
|
|
e1.start->val = e1.start->c;
|
|
e1.start->c = NFA_RANGE_MIN;
|
|
patch(e1.out, e2.start);
|
|
PUSH(frag(e1.start, e2.out));
|
|
break;
|
|
|
|
case NFA_EMPTY:
|
|
// 0-length, used in a repetition with max/min count of 0
|
|
if (nfa_calc_size == true) {
|
|
nstate++;
|
|
break;
|
|
}
|
|
s = alloc_state(NFA_EMPTY, NULL, NULL);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
PUSH(frag(s, list1(&s->out)));
|
|
break;
|
|
|
|
case NFA_OPT_CHARS: {
|
|
int n;
|
|
|
|
// \%[abc] implemented as:
|
|
// NFA_SPLIT
|
|
// +-CHAR(a)
|
|
// | +-NFA_SPLIT
|
|
// | +-CHAR(b)
|
|
// | | +-NFA_SPLIT
|
|
// | | +-CHAR(c)
|
|
// | | | +-next
|
|
// | | +- next
|
|
// | +- next
|
|
// +- next
|
|
n = *++p; // get number of characters
|
|
if (nfa_calc_size == true) {
|
|
nstate += n;
|
|
break;
|
|
}
|
|
s = NULL; // avoid compiler warning
|
|
e1.out = NULL; // stores list with out1's
|
|
s1 = NULL; // previous NFA_SPLIT to connect to
|
|
while (n-- > 0) {
|
|
e = POP(); // get character
|
|
s = alloc_state(NFA_SPLIT, e.start, NULL);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
if (e1.out == NULL) {
|
|
e1 = e;
|
|
}
|
|
patch(e.out, s1);
|
|
append(e1.out, list1(&s->out1));
|
|
s1 = s;
|
|
}
|
|
PUSH(frag(s, e1.out));
|
|
break;
|
|
}
|
|
|
|
case NFA_PREV_ATOM_NO_WIDTH:
|
|
case NFA_PREV_ATOM_NO_WIDTH_NEG:
|
|
case NFA_PREV_ATOM_JUST_BEFORE:
|
|
case NFA_PREV_ATOM_JUST_BEFORE_NEG:
|
|
case NFA_PREV_ATOM_LIKE_PATTERN: {
|
|
int before = (*p == NFA_PREV_ATOM_JUST_BEFORE
|
|
|| *p == NFA_PREV_ATOM_JUST_BEFORE_NEG);
|
|
int pattern = (*p == NFA_PREV_ATOM_LIKE_PATTERN);
|
|
int start_state;
|
|
int end_state;
|
|
int n = 0;
|
|
nfa_state_T *zend;
|
|
nfa_state_T *skip;
|
|
|
|
switch (*p) {
|
|
case NFA_PREV_ATOM_NO_WIDTH:
|
|
start_state = NFA_START_INVISIBLE;
|
|
end_state = NFA_END_INVISIBLE;
|
|
break;
|
|
case NFA_PREV_ATOM_NO_WIDTH_NEG:
|
|
start_state = NFA_START_INVISIBLE_NEG;
|
|
end_state = NFA_END_INVISIBLE_NEG;
|
|
break;
|
|
case NFA_PREV_ATOM_JUST_BEFORE:
|
|
start_state = NFA_START_INVISIBLE_BEFORE;
|
|
end_state = NFA_END_INVISIBLE;
|
|
break;
|
|
case NFA_PREV_ATOM_JUST_BEFORE_NEG:
|
|
start_state = NFA_START_INVISIBLE_BEFORE_NEG;
|
|
end_state = NFA_END_INVISIBLE_NEG;
|
|
break;
|
|
default: // NFA_PREV_ATOM_LIKE_PATTERN:
|
|
start_state = NFA_START_PATTERN;
|
|
end_state = NFA_END_PATTERN;
|
|
break;
|
|
}
|
|
|
|
if (before) {
|
|
n = *++p; // get the count
|
|
}
|
|
// The \@= operator: match the preceding atom with zero width.
|
|
// The \@! operator: no match for the preceding atom.
|
|
// The \@<= operator: match for the preceding atom.
|
|
// The \@<! operator: no match for the preceding atom.
|
|
// Surrounds the preceding atom with START_INVISIBLE and
|
|
// END_INVISIBLE, similarly to MOPEN.
|
|
|
|
if (nfa_calc_size == true) {
|
|
nstate += pattern ? 4 : 2;
|
|
break;
|
|
}
|
|
e = POP();
|
|
s1 = alloc_state(end_state, NULL, NULL);
|
|
if (s1 == NULL) {
|
|
goto theend;
|
|
}
|
|
|
|
s = alloc_state(start_state, e.start, s1);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
if (pattern) {
|
|
// NFA_ZEND -> NFA_END_PATTERN -> NFA_SKIP -> what follows.
|
|
skip = alloc_state(NFA_SKIP, NULL, NULL);
|
|
if (skip == NULL) {
|
|
goto theend;
|
|
}
|
|
zend = alloc_state(NFA_ZEND, s1, NULL);
|
|
if (zend == NULL) {
|
|
goto theend;
|
|
}
|
|
s1->out = skip;
|
|
patch(e.out, zend);
|
|
PUSH(frag(s, list1(&skip->out)));
|
|
} else {
|
|
patch(e.out, s1);
|
|
PUSH(frag(s, list1(&s1->out)));
|
|
if (before) {
|
|
if (n <= 0) {
|
|
// See if we can guess the maximum width, it avoids a
|
|
// lot of pointless tries.
|
|
n = nfa_max_width(e.start, 0);
|
|
}
|
|
s->val = n; // store the count
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case NFA_COMPOSING: // char with composing char
|
|
FALLTHROUGH;
|
|
|
|
case NFA_MOPEN: // \( \) Submatch
|
|
case NFA_MOPEN1:
|
|
case NFA_MOPEN2:
|
|
case NFA_MOPEN3:
|
|
case NFA_MOPEN4:
|
|
case NFA_MOPEN5:
|
|
case NFA_MOPEN6:
|
|
case NFA_MOPEN7:
|
|
case NFA_MOPEN8:
|
|
case NFA_MOPEN9:
|
|
case NFA_ZOPEN: // \z( \) Submatch
|
|
case NFA_ZOPEN1:
|
|
case NFA_ZOPEN2:
|
|
case NFA_ZOPEN3:
|
|
case NFA_ZOPEN4:
|
|
case NFA_ZOPEN5:
|
|
case NFA_ZOPEN6:
|
|
case NFA_ZOPEN7:
|
|
case NFA_ZOPEN8:
|
|
case NFA_ZOPEN9:
|
|
case NFA_NOPEN: // \%( \) "Invisible Submatch"
|
|
if (nfa_calc_size == true) {
|
|
nstate += 2;
|
|
break;
|
|
}
|
|
|
|
mopen = *p;
|
|
switch (*p) {
|
|
case NFA_NOPEN:
|
|
mclose = NFA_NCLOSE; break;
|
|
case NFA_ZOPEN:
|
|
mclose = NFA_ZCLOSE; break;
|
|
case NFA_ZOPEN1:
|
|
mclose = NFA_ZCLOSE1; break;
|
|
case NFA_ZOPEN2:
|
|
mclose = NFA_ZCLOSE2; break;
|
|
case NFA_ZOPEN3:
|
|
mclose = NFA_ZCLOSE3; break;
|
|
case NFA_ZOPEN4:
|
|
mclose = NFA_ZCLOSE4; break;
|
|
case NFA_ZOPEN5:
|
|
mclose = NFA_ZCLOSE5; break;
|
|
case NFA_ZOPEN6:
|
|
mclose = NFA_ZCLOSE6; break;
|
|
case NFA_ZOPEN7:
|
|
mclose = NFA_ZCLOSE7; break;
|
|
case NFA_ZOPEN8:
|
|
mclose = NFA_ZCLOSE8; break;
|
|
case NFA_ZOPEN9:
|
|
mclose = NFA_ZCLOSE9; break;
|
|
case NFA_COMPOSING:
|
|
mclose = NFA_END_COMPOSING; break;
|
|
default:
|
|
// NFA_MOPEN, NFA_MOPEN1 .. NFA_MOPEN9
|
|
mclose = *p + NSUBEXP;
|
|
break;
|
|
}
|
|
|
|
// Allow "NFA_MOPEN" as a valid postfix representation for
|
|
// the empty regexp "". In this case, the NFA will be
|
|
// NFA_MOPEN -> NFA_MCLOSE. Note that this also allows
|
|
// empty groups of parenthesis, and empty mbyte chars
|
|
if (stackp == stack) {
|
|
s = alloc_state(mopen, NULL, NULL);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
s1 = alloc_state(mclose, NULL, NULL);
|
|
if (s1 == NULL) {
|
|
goto theend;
|
|
}
|
|
patch(list1(&s->out), s1);
|
|
PUSH(frag(s, list1(&s1->out)));
|
|
break;
|
|
}
|
|
|
|
// At least one node was emitted before NFA_MOPEN, so
|
|
// at least one node will be between NFA_MOPEN and NFA_MCLOSE
|
|
e = POP();
|
|
s = alloc_state(mopen, e.start, NULL); // `('
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
|
|
s1 = alloc_state(mclose, NULL, NULL); // `)'
|
|
if (s1 == NULL) {
|
|
goto theend;
|
|
}
|
|
patch(e.out, s1);
|
|
|
|
if (mopen == NFA_COMPOSING) {
|
|
// COMPOSING->out1 = END_COMPOSING
|
|
patch(list1(&s->out1), s1);
|
|
}
|
|
|
|
PUSH(frag(s, list1(&s1->out)));
|
|
break;
|
|
|
|
case NFA_BACKREF1:
|
|
case NFA_BACKREF2:
|
|
case NFA_BACKREF3:
|
|
case NFA_BACKREF4:
|
|
case NFA_BACKREF5:
|
|
case NFA_BACKREF6:
|
|
case NFA_BACKREF7:
|
|
case NFA_BACKREF8:
|
|
case NFA_BACKREF9:
|
|
case NFA_ZREF1:
|
|
case NFA_ZREF2:
|
|
case NFA_ZREF3:
|
|
case NFA_ZREF4:
|
|
case NFA_ZREF5:
|
|
case NFA_ZREF6:
|
|
case NFA_ZREF7:
|
|
case NFA_ZREF8:
|
|
case NFA_ZREF9:
|
|
if (nfa_calc_size == true) {
|
|
nstate += 2;
|
|
break;
|
|
}
|
|
s = alloc_state(*p, NULL, NULL);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
s1 = alloc_state(NFA_SKIP, NULL, NULL);
|
|
if (s1 == NULL) {
|
|
goto theend;
|
|
}
|
|
patch(list1(&s->out), s1);
|
|
PUSH(frag(s, list1(&s1->out)));
|
|
break;
|
|
|
|
case NFA_LNUM:
|
|
case NFA_LNUM_GT:
|
|
case NFA_LNUM_LT:
|
|
case NFA_VCOL:
|
|
case NFA_VCOL_GT:
|
|
case NFA_VCOL_LT:
|
|
case NFA_COL:
|
|
case NFA_COL_GT:
|
|
case NFA_COL_LT:
|
|
case NFA_MARK:
|
|
case NFA_MARK_GT:
|
|
case NFA_MARK_LT: {
|
|
int n = *++p; // lnum, col or mark name
|
|
|
|
if (nfa_calc_size == true) {
|
|
nstate += 1;
|
|
break;
|
|
}
|
|
s = alloc_state(p[-1], NULL, NULL);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
s->val = n;
|
|
PUSH(frag(s, list1(&s->out)));
|
|
break;
|
|
}
|
|
|
|
case NFA_ZSTART:
|
|
case NFA_ZEND:
|
|
default:
|
|
// Operands
|
|
if (nfa_calc_size == true) {
|
|
nstate++;
|
|
break;
|
|
}
|
|
s = alloc_state(*p, NULL, NULL);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
PUSH(frag(s, list1(&s->out)));
|
|
break;
|
|
} // switch(*p)
|
|
} // for(p = postfix; *p; ++p)
|
|
|
|
if (nfa_calc_size == true) {
|
|
nstate++;
|
|
goto theend; // Return value when counting size is ignored anyway
|
|
}
|
|
|
|
e = POP();
|
|
if (stackp != stack) {
|
|
xfree(stack);
|
|
EMSG_RET_NULL(_("E875: (NFA regexp) (While converting from postfix to NFA),"
|
|
"too many states left on stack"));
|
|
}
|
|
|
|
if (istate >= nstate) {
|
|
xfree(stack);
|
|
EMSG_RET_NULL(_("E876: (NFA regexp) "
|
|
"Not enough space to store the whole NFA "));
|
|
}
|
|
|
|
matchstate = &state_ptr[istate++]; // the match state
|
|
matchstate->c = NFA_MATCH;
|
|
matchstate->out = matchstate->out1 = NULL;
|
|
matchstate->id = 0;
|
|
|
|
patch(e.out, matchstate);
|
|
ret = e.start;
|
|
|
|
theend:
|
|
xfree(stack);
|
|
return ret;
|
|
|
|
#undef POP1
|
|
#undef PUSH1
|
|
#undef POP2
|
|
#undef PUSH2
|
|
#undef POP
|
|
#undef PUSH
|
|
}
|
|
|
|
// After building the NFA program, inspect it to add optimization hints.
|
|
static void nfa_postprocess(nfa_regprog_T *prog)
|
|
{
|
|
int i;
|
|
int c;
|
|
|
|
for (i = 0; i < prog->nstate; i++) {
|
|
c = prog->state[i].c;
|
|
if (c == NFA_START_INVISIBLE
|
|
|| c == NFA_START_INVISIBLE_NEG
|
|
|| c == NFA_START_INVISIBLE_BEFORE
|
|
|| c == NFA_START_INVISIBLE_BEFORE_NEG) {
|
|
int directly;
|
|
|
|
// Do it directly when what follows is possibly the end of the
|
|
// match.
|
|
if (match_follows(prog->state[i].out1->out, 0)) {
|
|
directly = true;
|
|
} else {
|
|
int ch_invisible = failure_chance(prog->state[i].out, 0);
|
|
int ch_follows = failure_chance(prog->state[i].out1->out, 0);
|
|
|
|
// Postpone when the invisible match is expensive or has a
|
|
// lower chance of failing.
|
|
if (c == NFA_START_INVISIBLE_BEFORE
|
|
|| c == NFA_START_INVISIBLE_BEFORE_NEG) {
|
|
// "before" matches are very expensive when
|
|
// unbounded, always prefer what follows then,
|
|
// unless what follows will always match.
|
|
// Otherwise strongly prefer what follows.
|
|
if (prog->state[i].val <= 0 && ch_follows > 0) {
|
|
directly = false;
|
|
} else {
|
|
directly = ch_follows * 10 < ch_invisible;
|
|
}
|
|
} else {
|
|
// normal invisible, first do the one with the
|
|
// highest failure chance
|
|
directly = ch_follows < ch_invisible;
|
|
}
|
|
}
|
|
if (directly) {
|
|
// switch to the _FIRST state
|
|
prog->state[i].c++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////
|
|
// NFA execution code.
|
|
/////////////////////////////////////////////////////////////////
|
|
|
|
// Values for done in nfa_pim_T.
|
|
#define NFA_PIM_UNUSED 0 // pim not used
|
|
#define NFA_PIM_TODO 1 // pim not done yet
|
|
#define NFA_PIM_MATCH 2 // pim executed, matches
|
|
#define NFA_PIM_NOMATCH 3 // pim executed, no match
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
static void log_subsexpr(regsubs_T *subs)
|
|
{
|
|
log_subexpr(&subs->norm);
|
|
if (rex.nfa_has_zsubexpr) {
|
|
log_subexpr(&subs->synt);
|
|
}
|
|
}
|
|
|
|
static void log_subexpr(regsub_T *sub)
|
|
{
|
|
int j;
|
|
|
|
for (j = 0; j < sub->in_use; j++) {
|
|
if (REG_MULTI) {
|
|
fprintf(log_fd, "*** group %d, start: c=%d, l=%d, end: c=%d, l=%d\n",
|
|
j,
|
|
sub->list.multi[j].start_col,
|
|
(int)sub->list.multi[j].start_lnum,
|
|
sub->list.multi[j].end_col,
|
|
(int)sub->list.multi[j].end_lnum);
|
|
} else {
|
|
char *s = (char *)sub->list.line[j].start;
|
|
char *e = (char *)sub->list.line[j].end;
|
|
|
|
fprintf(log_fd, "*** group %d, start: \"%s\", end: \"%s\"\n",
|
|
j,
|
|
s == NULL ? "NULL" : s,
|
|
e == NULL ? "NULL" : e);
|
|
}
|
|
}
|
|
}
|
|
|
|
static char *pim_info(const nfa_pim_T *pim)
|
|
{
|
|
static char buf[30];
|
|
|
|
if (pim == NULL || pim->result == NFA_PIM_UNUSED) {
|
|
buf[0] = NUL;
|
|
} else {
|
|
snprintf(buf, sizeof(buf), " PIM col %d",
|
|
REG_MULTI
|
|
? (int)pim->end.pos.col
|
|
: (int)(pim->end.ptr - rex.input));
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
#endif
|
|
|
|
// Used during execution: whether a match has been found.
|
|
static int nfa_match;
|
|
static proftime_T *nfa_time_limit;
|
|
static int *nfa_timed_out;
|
|
static int nfa_time_count;
|
|
|
|
// Copy postponed invisible match info from "from" to "to".
|
|
static void copy_pim(nfa_pim_T *to, nfa_pim_T *from)
|
|
{
|
|
to->result = from->result;
|
|
to->state = from->state;
|
|
copy_sub(&to->subs.norm, &from->subs.norm);
|
|
if (rex.nfa_has_zsubexpr) {
|
|
copy_sub(&to->subs.synt, &from->subs.synt);
|
|
}
|
|
to->end = from->end;
|
|
}
|
|
|
|
static void clear_sub(regsub_T *sub)
|
|
{
|
|
if (REG_MULTI) {
|
|
// Use 0xff to set lnum to -1
|
|
memset(sub->list.multi, 0xff, sizeof(struct multipos) * (size_t)rex.nfa_nsubexpr);
|
|
} else {
|
|
memset(sub->list.line, 0, sizeof(struct linepos) * (size_t)rex.nfa_nsubexpr);
|
|
}
|
|
sub->in_use = 0;
|
|
}
|
|
|
|
// Copy the submatches from "from" to "to".
|
|
static void copy_sub(regsub_T *to, regsub_T *from)
|
|
{
|
|
to->in_use = from->in_use;
|
|
if (from->in_use <= 0) {
|
|
return;
|
|
}
|
|
|
|
// Copy the match start and end positions.
|
|
if (REG_MULTI) {
|
|
memmove(&to->list.multi[0], &from->list.multi[0],
|
|
sizeof(struct multipos) * (size_t)from->in_use);
|
|
to->orig_start_col = from->orig_start_col;
|
|
} else {
|
|
memmove(&to->list.line[0], &from->list.line[0],
|
|
sizeof(struct linepos) * (size_t)from->in_use);
|
|
}
|
|
}
|
|
|
|
// Like copy_sub() but exclude the main match.
|
|
static void copy_sub_off(regsub_T *to, regsub_T *from)
|
|
{
|
|
if (to->in_use < from->in_use) {
|
|
to->in_use = from->in_use;
|
|
}
|
|
if (from->in_use <= 1) {
|
|
return;
|
|
}
|
|
|
|
// Copy the match start and end positions.
|
|
if (REG_MULTI) {
|
|
memmove(&to->list.multi[1], &from->list.multi[1],
|
|
sizeof(struct multipos) * (size_t)(from->in_use - 1));
|
|
} else {
|
|
memmove(&to->list.line[1], &from->list.line[1],
|
|
sizeof(struct linepos) * (size_t)(from->in_use - 1));
|
|
}
|
|
}
|
|
|
|
// Like copy_sub() but only do the end of the main match if \ze is present.
|
|
static void copy_ze_off(regsub_T *to, regsub_T *from)
|
|
{
|
|
if (!rex.nfa_has_zend) {
|
|
return;
|
|
}
|
|
|
|
if (REG_MULTI) {
|
|
if (from->list.multi[0].end_lnum >= 0) {
|
|
to->list.multi[0].end_lnum = from->list.multi[0].end_lnum;
|
|
to->list.multi[0].end_col = from->list.multi[0].end_col;
|
|
}
|
|
} else {
|
|
if (from->list.line[0].end != NULL) {
|
|
to->list.line[0].end = from->list.line[0].end;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return true if "sub1" and "sub2" have the same start positions.
|
|
// When using back-references also check the end position.
|
|
static bool sub_equal(regsub_T *sub1, regsub_T *sub2)
|
|
{
|
|
int i;
|
|
int todo;
|
|
linenr_T s1;
|
|
linenr_T s2;
|
|
uint8_t *sp1;
|
|
uint8_t *sp2;
|
|
|
|
todo = sub1->in_use > sub2->in_use ? sub1->in_use : sub2->in_use;
|
|
if (REG_MULTI) {
|
|
for (i = 0; i < todo; i++) {
|
|
if (i < sub1->in_use) {
|
|
s1 = sub1->list.multi[i].start_lnum;
|
|
} else {
|
|
s1 = -1;
|
|
}
|
|
if (i < sub2->in_use) {
|
|
s2 = sub2->list.multi[i].start_lnum;
|
|
} else {
|
|
s2 = -1;
|
|
}
|
|
if (s1 != s2) {
|
|
return false;
|
|
}
|
|
if (s1 != -1 && sub1->list.multi[i].start_col
|
|
!= sub2->list.multi[i].start_col) {
|
|
return false;
|
|
}
|
|
if (rex.nfa_has_backref) {
|
|
if (i < sub1->in_use) {
|
|
s1 = sub1->list.multi[i].end_lnum;
|
|
} else {
|
|
s1 = -1;
|
|
}
|
|
if (i < sub2->in_use) {
|
|
s2 = sub2->list.multi[i].end_lnum;
|
|
} else {
|
|
s2 = -1;
|
|
}
|
|
if (s1 != s2) {
|
|
return false;
|
|
}
|
|
if (s1 != -1
|
|
&& sub1->list.multi[i].end_col != sub2->list.multi[i].end_col) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (i = 0; i < todo; i++) {
|
|
if (i < sub1->in_use) {
|
|
sp1 = sub1->list.line[i].start;
|
|
} else {
|
|
sp1 = NULL;
|
|
}
|
|
if (i < sub2->in_use) {
|
|
sp2 = sub2->list.line[i].start;
|
|
} else {
|
|
sp2 = NULL;
|
|
}
|
|
if (sp1 != sp2) {
|
|
return false;
|
|
}
|
|
if (rex.nfa_has_backref) {
|
|
if (i < sub1->in_use) {
|
|
sp1 = sub1->list.line[i].end;
|
|
} else {
|
|
sp1 = NULL;
|
|
}
|
|
if (i < sub2->in_use) {
|
|
sp2 = sub2->list.line[i].end;
|
|
} else {
|
|
sp2 = NULL;
|
|
}
|
|
if (sp1 != sp2) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
static void open_debug_log(TriState result)
|
|
{
|
|
log_fd = fopen(NFA_REGEXP_RUN_LOG, "a");
|
|
if (log_fd == NULL) {
|
|
emsg(_(e_log_open_failed));
|
|
log_fd = stderr;
|
|
}
|
|
|
|
fprintf(log_fd, "****************************\n");
|
|
fprintf(log_fd, "FINISHED RUNNING nfa_regmatch() recursively\n");
|
|
fprintf(log_fd, "MATCH = %s\n", result == kTrue ? "OK" : result == kNone ? "MAYBE" : "FALSE");
|
|
fprintf(log_fd, "****************************\n");
|
|
}
|
|
|
|
static void report_state(char *action, regsub_T *sub, nfa_state_T *state, int lid, nfa_pim_T *pim)
|
|
{
|
|
int col;
|
|
|
|
if (sub->in_use <= 0) {
|
|
col = -1;
|
|
} else if (REG_MULTI) {
|
|
col = sub->list.multi[0].start_col;
|
|
} else {
|
|
col = (int)(sub->list.line[0].start - rex.line);
|
|
}
|
|
nfa_set_code(state->c);
|
|
if (log_fd == NULL) {
|
|
open_debug_log(kNone);
|
|
}
|
|
fprintf(log_fd, "> %s state %d to list %d. char %d: %s (start col %d)%s\n",
|
|
action, abs(state->id), lid, state->c, code, col,
|
|
pim_info(pim));
|
|
}
|
|
|
|
#endif
|
|
|
|
/// @param l runtime state list
|
|
/// @param state state to update
|
|
/// @param subs pointers to subexpressions
|
|
/// @param pim postponed match or NULL
|
|
///
|
|
/// @return true if the same state is already in list "l" with the same
|
|
/// positions as "subs".
|
|
static bool has_state_with_pos(nfa_list_T *l, nfa_state_T *state, regsubs_T *subs, nfa_pim_T *pim)
|
|
FUNC_ATTR_NONNULL_ARG(1, 2, 3)
|
|
{
|
|
for (int i = 0; i < l->n; i++) {
|
|
nfa_thread_T *thread = &l->t[i];
|
|
if (thread->state->id == state->id
|
|
&& sub_equal(&thread->subs.norm, &subs->norm)
|
|
&& (!rex.nfa_has_zsubexpr
|
|
|| sub_equal(&thread->subs.synt, &subs->synt))
|
|
&& pim_equal(&thread->pim, pim)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Return true if "one" and "two" are equal. That includes when both are not
|
|
// set.
|
|
static bool pim_equal(const nfa_pim_T *one, const nfa_pim_T *two)
|
|
{
|
|
const bool one_unused = (one == NULL || one->result == NFA_PIM_UNUSED);
|
|
const bool two_unused = (two == NULL || two->result == NFA_PIM_UNUSED);
|
|
|
|
if (one_unused) {
|
|
// one is unused: equal when two is also unused
|
|
return two_unused;
|
|
}
|
|
if (two_unused) {
|
|
// one is used and two is not: not equal
|
|
return false;
|
|
}
|
|
// compare the state id
|
|
if (one->state->id != two->state->id) {
|
|
return false;
|
|
}
|
|
// compare the position
|
|
if (REG_MULTI) {
|
|
return one->end.pos.lnum == two->end.pos.lnum
|
|
&& one->end.pos.col == two->end.pos.col;
|
|
}
|
|
return one->end.ptr == two->end.ptr;
|
|
}
|
|
|
|
// Return true if "state" leads to a NFA_MATCH without advancing the input.
|
|
static bool match_follows(const nfa_state_T *startstate, int depth)
|
|
FUNC_ATTR_NONNULL_ALL
|
|
{
|
|
const nfa_state_T *state = startstate;
|
|
|
|
// avoid too much recursion
|
|
if (depth > 10) {
|
|
return false;
|
|
}
|
|
while (state != NULL) {
|
|
switch (state->c) {
|
|
case NFA_MATCH:
|
|
case NFA_MCLOSE:
|
|
case NFA_END_INVISIBLE:
|
|
case NFA_END_INVISIBLE_NEG:
|
|
case NFA_END_PATTERN:
|
|
return true;
|
|
|
|
case NFA_SPLIT:
|
|
return match_follows(state->out, depth + 1)
|
|
|| match_follows(state->out1, depth + 1);
|
|
|
|
case NFA_START_INVISIBLE:
|
|
case NFA_START_INVISIBLE_FIRST:
|
|
case NFA_START_INVISIBLE_BEFORE:
|
|
case NFA_START_INVISIBLE_BEFORE_FIRST:
|
|
case NFA_START_INVISIBLE_NEG:
|
|
case NFA_START_INVISIBLE_NEG_FIRST:
|
|
case NFA_START_INVISIBLE_BEFORE_NEG:
|
|
case NFA_START_INVISIBLE_BEFORE_NEG_FIRST:
|
|
case NFA_COMPOSING:
|
|
// skip ahead to next state
|
|
state = state->out1->out;
|
|
continue;
|
|
|
|
case NFA_ANY:
|
|
case NFA_ANY_COMPOSING:
|
|
case NFA_IDENT:
|
|
case NFA_SIDENT:
|
|
case NFA_KWORD:
|
|
case NFA_SKWORD:
|
|
case NFA_FNAME:
|
|
case NFA_SFNAME:
|
|
case NFA_PRINT:
|
|
case NFA_SPRINT:
|
|
case NFA_WHITE:
|
|
case NFA_NWHITE:
|
|
case NFA_DIGIT:
|
|
case NFA_NDIGIT:
|
|
case NFA_HEX:
|
|
case NFA_NHEX:
|
|
case NFA_OCTAL:
|
|
case NFA_NOCTAL:
|
|
case NFA_WORD:
|
|
case NFA_NWORD:
|
|
case NFA_HEAD:
|
|
case NFA_NHEAD:
|
|
case NFA_ALPHA:
|
|
case NFA_NALPHA:
|
|
case NFA_LOWER:
|
|
case NFA_NLOWER:
|
|
case NFA_UPPER:
|
|
case NFA_NUPPER:
|
|
case NFA_LOWER_IC:
|
|
case NFA_NLOWER_IC:
|
|
case NFA_UPPER_IC:
|
|
case NFA_NUPPER_IC:
|
|
case NFA_START_COLL:
|
|
case NFA_START_NEG_COLL:
|
|
case NFA_NEWL:
|
|
// state will advance input
|
|
return false;
|
|
|
|
default:
|
|
if (state->c > 0) {
|
|
// state will advance input
|
|
return false;
|
|
}
|
|
// Others: zero-width or possibly zero-width, might still find
|
|
// a match at the same position, keep looking.
|
|
break;
|
|
}
|
|
state = state->out;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// @param l runtime state list
|
|
/// @param state state to update
|
|
/// @param subs pointers to subexpressions
|
|
///
|
|
/// @return true if "state" is already in list "l".
|
|
static bool state_in_list(nfa_list_T *l, nfa_state_T *state, regsubs_T *subs)
|
|
FUNC_ATTR_NONNULL_ALL
|
|
{
|
|
if (state->lastlist[nfa_ll_index] == l->id) {
|
|
if (!rex.nfa_has_backref || has_state_with_pos(l, state, subs, NULL)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Offset used for "off" by addstate_here().
|
|
#define ADDSTATE_HERE_OFFSET 10
|
|
|
|
/// Add "state" and possibly what follows to state list ".".
|
|
///
|
|
/// @param l runtime state list
|
|
/// @param state state to update
|
|
/// @param subs_arg pointers to subexpressions
|
|
/// @param pim postponed look-behind match
|
|
/// @param off_arg byte offset, when -1 go to next line
|
|
///
|
|
/// @return "subs_arg", possibly copied into temp_subs.
|
|
/// NULL when recursiveness is too deep.
|
|
static regsubs_T *addstate(nfa_list_T *l, nfa_state_T *state, regsubs_T *subs_arg, nfa_pim_T *pim,
|
|
int off_arg)
|
|
FUNC_ATTR_NONNULL_ARG(1, 2) FUNC_ATTR_WARN_UNUSED_RESULT
|
|
{
|
|
int subidx;
|
|
int off = off_arg;
|
|
int add_here = false;
|
|
int listindex = 0;
|
|
int k;
|
|
int found = false;
|
|
nfa_thread_T *thread;
|
|
struct multipos save_multipos;
|
|
int save_in_use;
|
|
uint8_t *save_ptr;
|
|
int i;
|
|
regsub_T *sub;
|
|
regsubs_T *subs = subs_arg;
|
|
static regsubs_T temp_subs;
|
|
#ifdef REGEXP_DEBUG
|
|
int did_print = false;
|
|
#endif
|
|
static int depth = 0;
|
|
|
|
// This function is called recursively. When the depth is too much we run
|
|
// out of stack and crash, limit recursiveness here.
|
|
if (++depth >= 5000 || subs == NULL) {
|
|
depth--;
|
|
return NULL;
|
|
}
|
|
|
|
if (off_arg <= -ADDSTATE_HERE_OFFSET) {
|
|
add_here = true;
|
|
off = 0;
|
|
listindex = -(off_arg + ADDSTATE_HERE_OFFSET);
|
|
}
|
|
|
|
switch (state->c) {
|
|
case NFA_NCLOSE:
|
|
case NFA_MCLOSE:
|
|
case NFA_MCLOSE1:
|
|
case NFA_MCLOSE2:
|
|
case NFA_MCLOSE3:
|
|
case NFA_MCLOSE4:
|
|
case NFA_MCLOSE5:
|
|
case NFA_MCLOSE6:
|
|
case NFA_MCLOSE7:
|
|
case NFA_MCLOSE8:
|
|
case NFA_MCLOSE9:
|
|
case NFA_ZCLOSE:
|
|
case NFA_ZCLOSE1:
|
|
case NFA_ZCLOSE2:
|
|
case NFA_ZCLOSE3:
|
|
case NFA_ZCLOSE4:
|
|
case NFA_ZCLOSE5:
|
|
case NFA_ZCLOSE6:
|
|
case NFA_ZCLOSE7:
|
|
case NFA_ZCLOSE8:
|
|
case NFA_ZCLOSE9:
|
|
case NFA_MOPEN:
|
|
case NFA_ZEND:
|
|
case NFA_SPLIT:
|
|
case NFA_EMPTY:
|
|
// These nodes are not added themselves but their "out" and/or
|
|
// "out1" may be added below.
|
|
break;
|
|
|
|
case NFA_BOL:
|
|
case NFA_BOF:
|
|
// "^" won't match past end-of-line, don't bother trying.
|
|
// Except when at the end of the line, or when we are going to the
|
|
// next line for a look-behind match.
|
|
if (rex.input > rex.line
|
|
&& *rex.input != NUL
|
|
&& (nfa_endp == NULL
|
|
|| !REG_MULTI
|
|
|| rex.lnum == nfa_endp->se_u.pos.lnum)) {
|
|
goto skip_add;
|
|
}
|
|
FALLTHROUGH;
|
|
|
|
case NFA_MOPEN1:
|
|
case NFA_MOPEN2:
|
|
case NFA_MOPEN3:
|
|
case NFA_MOPEN4:
|
|
case NFA_MOPEN5:
|
|
case NFA_MOPEN6:
|
|
case NFA_MOPEN7:
|
|
case NFA_MOPEN8:
|
|
case NFA_MOPEN9:
|
|
case NFA_ZOPEN:
|
|
case NFA_ZOPEN1:
|
|
case NFA_ZOPEN2:
|
|
case NFA_ZOPEN3:
|
|
case NFA_ZOPEN4:
|
|
case NFA_ZOPEN5:
|
|
case NFA_ZOPEN6:
|
|
case NFA_ZOPEN7:
|
|
case NFA_ZOPEN8:
|
|
case NFA_ZOPEN9:
|
|
case NFA_NOPEN:
|
|
case NFA_ZSTART:
|
|
// These nodes need to be added so that we can bail out when it
|
|
// was added to this list before at the same position to avoid an
|
|
// endless loop for "\(\)*"
|
|
|
|
default:
|
|
if (state->lastlist[nfa_ll_index] == l->id && state->c != NFA_SKIP) {
|
|
// This state is already in the list, don't add it again,
|
|
// unless it is an MOPEN that is used for a backreference or
|
|
// when there is a PIM. For NFA_MATCH check the position,
|
|
// lower position is preferred.
|
|
if (!rex.nfa_has_backref && pim == NULL && !l->has_pim
|
|
&& state->c != NFA_MATCH) {
|
|
// When called from addstate_here() do insert before
|
|
// existing states.
|
|
if (add_here) {
|
|
for (k = 0; k < l->n && k < listindex; k++) {
|
|
if (l->t[k].state->id == state->id) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!add_here || found) {
|
|
skip_add:
|
|
#ifdef REGEXP_DEBUG
|
|
nfa_set_code(state->c);
|
|
fprintf(log_fd,
|
|
"> Not adding state %d to list %d. char %d: %s pim: %s has_pim: %d found: %d\n",
|
|
abs(state->id), l->id, state->c, code,
|
|
pim == NULL ? "NULL" : "yes", l->has_pim, found);
|
|
#endif
|
|
depth--;
|
|
return subs;
|
|
}
|
|
}
|
|
|
|
// Do not add the state again when it exists with the same
|
|
// positions.
|
|
if (has_state_with_pos(l, state, subs, pim)) {
|
|
goto skip_add;
|
|
}
|
|
}
|
|
|
|
// When there are backreferences or PIMs the number of states may
|
|
// be (a lot) bigger than anticipated.
|
|
if (l->n == l->len) {
|
|
const int newlen = l->len * 3 / 2 + 50;
|
|
const size_t newsize = (size_t)newlen * sizeof(nfa_thread_T);
|
|
|
|
if ((int64_t)(newsize >> 10) >= p_mmp) {
|
|
emsg(_(e_pattern_uses_more_memory_than_maxmempattern));
|
|
depth--;
|
|
return NULL;
|
|
}
|
|
if (subs != &temp_subs) {
|
|
// "subs" may point into the current array, need to make a
|
|
// copy before it becomes invalid.
|
|
copy_sub(&temp_subs.norm, &subs->norm);
|
|
if (rex.nfa_has_zsubexpr) {
|
|
copy_sub(&temp_subs.synt, &subs->synt);
|
|
}
|
|
subs = &temp_subs;
|
|
}
|
|
|
|
nfa_thread_T *const newt = xrealloc(l->t, newsize);
|
|
l->t = newt;
|
|
l->len = newlen;
|
|
}
|
|
|
|
// add the state to the list
|
|
state->lastlist[nfa_ll_index] = l->id;
|
|
thread = &l->t[l->n++];
|
|
thread->state = state;
|
|
if (pim == NULL) {
|
|
thread->pim.result = NFA_PIM_UNUSED;
|
|
} else {
|
|
copy_pim(&thread->pim, pim);
|
|
l->has_pim = true;
|
|
}
|
|
copy_sub(&thread->subs.norm, &subs->norm);
|
|
if (rex.nfa_has_zsubexpr) {
|
|
copy_sub(&thread->subs.synt, &subs->synt);
|
|
}
|
|
#ifdef REGEXP_DEBUG
|
|
report_state("Adding", &thread->subs.norm, state, l->id, pim);
|
|
did_print = true;
|
|
#endif
|
|
}
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
if (!did_print) {
|
|
report_state("Processing", &subs->norm, state, l->id, pim);
|
|
}
|
|
#endif
|
|
switch (state->c) {
|
|
case NFA_MATCH:
|
|
break;
|
|
|
|
case NFA_SPLIT:
|
|
// order matters here
|
|
subs = addstate(l, state->out, subs, pim, off_arg);
|
|
subs = addstate(l, state->out1, subs, pim, off_arg);
|
|
break;
|
|
|
|
case NFA_EMPTY:
|
|
case NFA_NOPEN:
|
|
case NFA_NCLOSE:
|
|
subs = addstate(l, state->out, subs, pim, off_arg);
|
|
break;
|
|
|
|
case NFA_MOPEN:
|
|
case NFA_MOPEN1:
|
|
case NFA_MOPEN2:
|
|
case NFA_MOPEN3:
|
|
case NFA_MOPEN4:
|
|
case NFA_MOPEN5:
|
|
case NFA_MOPEN6:
|
|
case NFA_MOPEN7:
|
|
case NFA_MOPEN8:
|
|
case NFA_MOPEN9:
|
|
case NFA_ZOPEN:
|
|
case NFA_ZOPEN1:
|
|
case NFA_ZOPEN2:
|
|
case NFA_ZOPEN3:
|
|
case NFA_ZOPEN4:
|
|
case NFA_ZOPEN5:
|
|
case NFA_ZOPEN6:
|
|
case NFA_ZOPEN7:
|
|
case NFA_ZOPEN8:
|
|
case NFA_ZOPEN9:
|
|
case NFA_ZSTART:
|
|
if (state->c == NFA_ZSTART) {
|
|
subidx = 0;
|
|
sub = &subs->norm;
|
|
} else if (state->c >= NFA_ZOPEN && state->c <= NFA_ZOPEN9) {
|
|
subidx = state->c - NFA_ZOPEN;
|
|
sub = &subs->synt;
|
|
} else {
|
|
subidx = state->c - NFA_MOPEN;
|
|
sub = &subs->norm;
|
|
}
|
|
|
|
// avoid compiler warnings
|
|
save_ptr = NULL;
|
|
CLEAR_FIELD(save_multipos);
|
|
|
|
// Set the position (with "off" added) in the subexpression. Save
|
|
// and restore it when it was in use. Otherwise fill any gap.
|
|
if (REG_MULTI) {
|
|
if (subidx < sub->in_use) {
|
|
save_multipos = sub->list.multi[subidx];
|
|
save_in_use = -1;
|
|
} else {
|
|
save_in_use = sub->in_use;
|
|
for (i = sub->in_use; i < subidx; i++) {
|
|
sub->list.multi[i].start_lnum = -1;
|
|
sub->list.multi[i].end_lnum = -1;
|
|
}
|
|
sub->in_use = subidx + 1;
|
|
}
|
|
if (off == -1) {
|
|
sub->list.multi[subidx].start_lnum = rex.lnum + 1;
|
|
sub->list.multi[subidx].start_col = 0;
|
|
} else {
|
|
sub->list.multi[subidx].start_lnum = rex.lnum;
|
|
sub->list.multi[subidx].start_col =
|
|
(colnr_T)(rex.input - rex.line + off);
|
|
}
|
|
sub->list.multi[subidx].end_lnum = -1;
|
|
} else {
|
|
if (subidx < sub->in_use) {
|
|
save_ptr = sub->list.line[subidx].start;
|
|
save_in_use = -1;
|
|
} else {
|
|
save_in_use = sub->in_use;
|
|
for (i = sub->in_use; i < subidx; i++) {
|
|
sub->list.line[i].start = NULL;
|
|
sub->list.line[i].end = NULL;
|
|
}
|
|
sub->in_use = subidx + 1;
|
|
}
|
|
sub->list.line[subidx].start = rex.input + off;
|
|
}
|
|
|
|
subs = addstate(l, state->out, subs, pim, off_arg);
|
|
if (subs == NULL) {
|
|
break;
|
|
}
|
|
// "subs" may have changed, need to set "sub" again.
|
|
if (state->c >= NFA_ZOPEN && state->c <= NFA_ZOPEN9) {
|
|
sub = &subs->synt;
|
|
} else {
|
|
sub = &subs->norm;
|
|
}
|
|
|
|
if (save_in_use == -1) {
|
|
if (REG_MULTI) {
|
|
sub->list.multi[subidx] = save_multipos;
|
|
} else {
|
|
sub->list.line[subidx].start = save_ptr;
|
|
}
|
|
} else {
|
|
sub->in_use = save_in_use;
|
|
}
|
|
break;
|
|
|
|
case NFA_MCLOSE:
|
|
if (rex.nfa_has_zend
|
|
&& (REG_MULTI
|
|
? subs->norm.list.multi[0].end_lnum >= 0
|
|
: subs->norm.list.line[0].end != NULL)) {
|
|
// Do not overwrite the position set by \ze.
|
|
subs = addstate(l, state->out, subs, pim, off_arg);
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
case NFA_MCLOSE1:
|
|
case NFA_MCLOSE2:
|
|
case NFA_MCLOSE3:
|
|
case NFA_MCLOSE4:
|
|
case NFA_MCLOSE5:
|
|
case NFA_MCLOSE6:
|
|
case NFA_MCLOSE7:
|
|
case NFA_MCLOSE8:
|
|
case NFA_MCLOSE9:
|
|
case NFA_ZCLOSE:
|
|
case NFA_ZCLOSE1:
|
|
case NFA_ZCLOSE2:
|
|
case NFA_ZCLOSE3:
|
|
case NFA_ZCLOSE4:
|
|
case NFA_ZCLOSE5:
|
|
case NFA_ZCLOSE6:
|
|
case NFA_ZCLOSE7:
|
|
case NFA_ZCLOSE8:
|
|
case NFA_ZCLOSE9:
|
|
case NFA_ZEND:
|
|
if (state->c == NFA_ZEND) {
|
|
subidx = 0;
|
|
sub = &subs->norm;
|
|
} else if (state->c >= NFA_ZCLOSE && state->c <= NFA_ZCLOSE9) {
|
|
subidx = state->c - NFA_ZCLOSE;
|
|
sub = &subs->synt;
|
|
} else {
|
|
subidx = state->c - NFA_MCLOSE;
|
|
sub = &subs->norm;
|
|
}
|
|
|
|
// We don't fill in gaps here, there must have been an MOPEN that
|
|
// has done that.
|
|
save_in_use = sub->in_use;
|
|
if (sub->in_use <= subidx) {
|
|
sub->in_use = subidx + 1;
|
|
}
|
|
if (REG_MULTI) {
|
|
save_multipos = sub->list.multi[subidx];
|
|
if (off == -1) {
|
|
sub->list.multi[subidx].end_lnum = rex.lnum + 1;
|
|
sub->list.multi[subidx].end_col = 0;
|
|
} else {
|
|
sub->list.multi[subidx].end_lnum = rex.lnum;
|
|
sub->list.multi[subidx].end_col =
|
|
(colnr_T)(rex.input - rex.line + off);
|
|
}
|
|
// avoid compiler warnings
|
|
save_ptr = NULL;
|
|
} else {
|
|
save_ptr = sub->list.line[subidx].end;
|
|
sub->list.line[subidx].end = rex.input + off;
|
|
// avoid compiler warnings
|
|
CLEAR_FIELD(save_multipos);
|
|
}
|
|
|
|
subs = addstate(l, state->out, subs, pim, off_arg);
|
|
if (subs == NULL) {
|
|
break;
|
|
}
|
|
// "subs" may have changed, need to set "sub" again.
|
|
if (state->c >= NFA_ZCLOSE && state->c <= NFA_ZCLOSE9) {
|
|
sub = &subs->synt;
|
|
} else {
|
|
sub = &subs->norm;
|
|
}
|
|
|
|
if (REG_MULTI) {
|
|
sub->list.multi[subidx] = save_multipos;
|
|
} else {
|
|
sub->list.line[subidx].end = save_ptr;
|
|
}
|
|
sub->in_use = save_in_use;
|
|
break;
|
|
}
|
|
depth--;
|
|
return subs;
|
|
}
|
|
|
|
/// Like addstate(), but the new state(s) are put at position "*ip".
|
|
/// Used for zero-width matches, next state to use is the added one.
|
|
/// This makes sure the order of states to be tried does not change, which
|
|
/// matters for alternatives.
|
|
///
|
|
/// @param l runtime state list
|
|
/// @param state state to update
|
|
/// @param subs pointers to subexpressions
|
|
/// @param pim postponed look-behind match
|
|
static regsubs_T *addstate_here(nfa_list_T *l, nfa_state_T *state, regsubs_T *subs, nfa_pim_T *pim,
|
|
int *ip)
|
|
FUNC_ATTR_NONNULL_ARG(1, 2, 5) FUNC_ATTR_WARN_UNUSED_RESULT
|
|
{
|
|
int tlen = l->n;
|
|
int count;
|
|
int listidx = *ip;
|
|
|
|
// First add the state(s) at the end, so that we know how many there are.
|
|
// Pass the listidx as offset (avoids adding another argument to
|
|
// addstate()).
|
|
regsubs_T *r = addstate(l, state, subs, pim, -listidx - ADDSTATE_HERE_OFFSET);
|
|
if (r == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
// when "*ip" was at the end of the list, nothing to do
|
|
if (listidx + 1 == tlen) {
|
|
return r;
|
|
}
|
|
|
|
// re-order to put the new state at the current position
|
|
count = l->n - tlen;
|
|
if (count == 0) {
|
|
return r; // no state got added
|
|
}
|
|
if (count == 1) {
|
|
// overwrite the current state
|
|
l->t[listidx] = l->t[l->n - 1];
|
|
} else if (count > 1) {
|
|
if (l->n + count - 1 >= l->len) {
|
|
// not enough space to move the new states, reallocate the list
|
|
// and move the states to the right position
|
|
const int newlen = l->len * 3 / 2 + 50;
|
|
const size_t newsize = (size_t)newlen * sizeof(nfa_thread_T);
|
|
|
|
if ((int64_t)(newsize >> 10) >= p_mmp) {
|
|
emsg(_(e_pattern_uses_more_memory_than_maxmempattern));
|
|
return NULL;
|
|
}
|
|
nfa_thread_T *const newl = xmalloc(newsize);
|
|
l->len = newlen;
|
|
memmove(&(newl[0]),
|
|
&(l->t[0]),
|
|
sizeof(nfa_thread_T) * (size_t)listidx);
|
|
memmove(&(newl[listidx]),
|
|
&(l->t[l->n - count]),
|
|
sizeof(nfa_thread_T) * (size_t)count);
|
|
memmove(&(newl[listidx + count]),
|
|
&(l->t[listidx + 1]),
|
|
sizeof(nfa_thread_T) * (size_t)(l->n - count - listidx - 1));
|
|
xfree(l->t);
|
|
l->t = newl;
|
|
} else {
|
|
// make space for new states, then move them from the
|
|
// end to the current position
|
|
memmove(&(l->t[listidx + count]),
|
|
&(l->t[listidx + 1]),
|
|
sizeof(nfa_thread_T) * (size_t)(l->n - listidx - 1));
|
|
memmove(&(l->t[listidx]),
|
|
&(l->t[l->n - 1]),
|
|
sizeof(nfa_thread_T) * (size_t)count);
|
|
}
|
|
}
|
|
l->n--;
|
|
*ip = listidx - 1;
|
|
|
|
return r;
|
|
}
|
|
|
|
// Check character class "class" against current character c.
|
|
static int check_char_class(int cls, int c)
|
|
{
|
|
switch (cls) {
|
|
case NFA_CLASS_ALNUM:
|
|
if (c >= 1 && c < 128 && isalnum(c)) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_ALPHA:
|
|
if (c >= 1 && c < 128 && isalpha(c)) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_BLANK:
|
|
if (c == ' ' || c == '\t') {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_CNTRL:
|
|
if (c >= 1 && c <= 127 && iscntrl(c)) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_DIGIT:
|
|
if (ascii_isdigit(c)) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_GRAPH:
|
|
if (c >= 1 && c <= 127 && isgraph(c)) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_LOWER:
|
|
if (mb_islower(c) && c != 170 && c != 186) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_PRINT:
|
|
if (vim_isprintc(c)) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_PUNCT:
|
|
if (c >= 1 && c < 128 && ispunct(c)) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_SPACE:
|
|
if ((c >= 9 && c <= 13) || (c == ' ')) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_UPPER:
|
|
if (mb_isupper(c)) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_XDIGIT:
|
|
if (ascii_isxdigit(c)) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_TAB:
|
|
if (c == '\t') {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_RETURN:
|
|
if (c == '\r') {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_BACKSPACE:
|
|
if (c == '\b') {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_ESCAPE:
|
|
if (c == ESC) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_IDENT:
|
|
if (vim_isIDc(c)) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_KEYWORD:
|
|
if (reg_iswordc(c)) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_FNAME:
|
|
if (vim_isfilec(c)) {
|
|
return OK;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
// should not be here :P
|
|
siemsg(_(e_ill_char_class), (int64_t)cls);
|
|
return FAIL;
|
|
}
|
|
return FAIL;
|
|
}
|
|
|
|
/// Check for a match with subexpression "subidx".
|
|
///
|
|
/// @param sub pointers to subexpressions
|
|
/// @param bytelen out: length of match in bytes
|
|
///
|
|
/// @return true if it matches.
|
|
static int match_backref(regsub_T *sub, int subidx, int *bytelen)
|
|
{
|
|
int len;
|
|
|
|
if (sub->in_use <= subidx) {
|
|
retempty:
|
|
// backref was not set, match an empty string
|
|
*bytelen = 0;
|
|
return true;
|
|
}
|
|
|
|
if (REG_MULTI) {
|
|
if (sub->list.multi[subidx].start_lnum < 0
|
|
|| sub->list.multi[subidx].end_lnum < 0) {
|
|
goto retempty;
|
|
}
|
|
if (sub->list.multi[subidx].start_lnum == rex.lnum
|
|
&& sub->list.multi[subidx].end_lnum == rex.lnum) {
|
|
len = sub->list.multi[subidx].end_col
|
|
- sub->list.multi[subidx].start_col;
|
|
if (cstrncmp((char *)rex.line + sub->list.multi[subidx].start_col,
|
|
(char *)rex.input, &len) == 0) {
|
|
*bytelen = len;
|
|
return true;
|
|
}
|
|
} else {
|
|
if (match_with_backref(sub->list.multi[subidx].start_lnum,
|
|
sub->list.multi[subidx].start_col,
|
|
sub->list.multi[subidx].end_lnum,
|
|
sub->list.multi[subidx].end_col,
|
|
bytelen) == RA_MATCH) {
|
|
return true;
|
|
}
|
|
}
|
|
} else {
|
|
if (sub->list.line[subidx].start == NULL
|
|
|| sub->list.line[subidx].end == NULL) {
|
|
goto retempty;
|
|
}
|
|
len = (int)(sub->list.line[subidx].end - sub->list.line[subidx].start);
|
|
if (cstrncmp((char *)sub->list.line[subidx].start, (char *)rex.input, &len) == 0) {
|
|
*bytelen = len;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Check for a match with \z subexpression "subidx".
|
|
///
|
|
/// @param bytelen out: length of match in bytes
|
|
///
|
|
/// @return true if it matches.
|
|
static int match_zref(int subidx, int *bytelen)
|
|
{
|
|
int len;
|
|
|
|
cleanup_zsubexpr();
|
|
if (re_extmatch_in == NULL || re_extmatch_in->matches[subidx] == NULL) {
|
|
// backref was not set, match an empty string
|
|
*bytelen = 0;
|
|
return true;
|
|
}
|
|
|
|
len = (int)strlen((char *)re_extmatch_in->matches[subidx]);
|
|
if (cstrncmp((char *)re_extmatch_in->matches[subidx], (char *)rex.input, &len) == 0) {
|
|
*bytelen = len;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Save list IDs for all NFA states of "prog" into "list".
|
|
// Also reset the IDs to zero.
|
|
// Only used for the recursive value lastlist[1].
|
|
static void nfa_save_listids(nfa_regprog_T *prog, int *list)
|
|
{
|
|
int i;
|
|
nfa_state_T *p;
|
|
|
|
// Order in the list is reverse, it's a bit faster that way.
|
|
p = &prog->state[0];
|
|
for (i = prog->nstate; --i >= 0;) {
|
|
list[i] = p->lastlist[1];
|
|
p->lastlist[1] = 0;
|
|
p++;
|
|
}
|
|
}
|
|
|
|
// Restore list IDs from "list" to all NFA states.
|
|
static void nfa_restore_listids(nfa_regprog_T *prog, const int *list)
|
|
{
|
|
int i;
|
|
nfa_state_T *p;
|
|
|
|
p = &prog->state[0];
|
|
for (i = prog->nstate; --i >= 0;) {
|
|
p->lastlist[1] = list[i];
|
|
p++;
|
|
}
|
|
}
|
|
|
|
static bool nfa_re_num_cmp(uintmax_t val, int op, uintmax_t pos)
|
|
{
|
|
if (op == 1) {
|
|
return pos > val;
|
|
}
|
|
if (op == 2) {
|
|
return pos < val;
|
|
}
|
|
return val == pos;
|
|
}
|
|
|
|
// Recursively call nfa_regmatch()
|
|
// "pim" is NULL or contains info about a Postponed Invisible Match (start
|
|
// position).
|
|
static int recursive_regmatch(nfa_state_T *state, nfa_pim_T *pim, nfa_regprog_T *prog,
|
|
regsubs_T *submatch, regsubs_T *m, int **listids, int *listids_len)
|
|
FUNC_ATTR_NONNULL_ARG(1, 3, 5, 6, 7)
|
|
{
|
|
const int save_reginput_col = (int)(rex.input - rex.line);
|
|
const int save_reglnum = rex.lnum;
|
|
const int save_nfa_match = nfa_match;
|
|
const int save_nfa_listid = rex.nfa_listid;
|
|
save_se_T *const save_nfa_endp = nfa_endp;
|
|
save_se_T endpos;
|
|
save_se_T *endposp = NULL;
|
|
int need_restore = false;
|
|
|
|
if (pim != NULL) {
|
|
// start at the position where the postponed match was
|
|
if (REG_MULTI) {
|
|
rex.input = rex.line + pim->end.pos.col;
|
|
} else {
|
|
rex.input = pim->end.ptr;
|
|
}
|
|
}
|
|
|
|
if (state->c == NFA_START_INVISIBLE_BEFORE
|
|
|| state->c == NFA_START_INVISIBLE_BEFORE_FIRST
|
|
|| state->c == NFA_START_INVISIBLE_BEFORE_NEG
|
|
|| state->c == NFA_START_INVISIBLE_BEFORE_NEG_FIRST) {
|
|
// The recursive match must end at the current position. When "pim" is
|
|
// not NULL it specifies the current position.
|
|
endposp = &endpos;
|
|
if (REG_MULTI) {
|
|
if (pim == NULL) {
|
|
endpos.se_u.pos.col = (int)(rex.input - rex.line);
|
|
endpos.se_u.pos.lnum = rex.lnum;
|
|
} else {
|
|
endpos.se_u.pos = pim->end.pos;
|
|
}
|
|
} else {
|
|
if (pim == NULL) {
|
|
endpos.se_u.ptr = rex.input;
|
|
} else {
|
|
endpos.se_u.ptr = pim->end.ptr;
|
|
}
|
|
}
|
|
|
|
// Go back the specified number of bytes, or as far as the
|
|
// start of the previous line, to try matching "\@<=" or
|
|
// not matching "\@<!". This is very inefficient, limit the number of
|
|
// bytes if possible.
|
|
if (state->val <= 0) {
|
|
if (REG_MULTI) {
|
|
rex.line = (uint8_t *)reg_getline(--rex.lnum);
|
|
if (rex.line == NULL) {
|
|
// can't go before the first line
|
|
rex.line = (uint8_t *)reg_getline(++rex.lnum);
|
|
}
|
|
}
|
|
rex.input = rex.line;
|
|
} else {
|
|
if (REG_MULTI && (int)(rex.input - rex.line) < state->val) {
|
|
// Not enough bytes in this line, go to end of
|
|
// previous line.
|
|
rex.line = (uint8_t *)reg_getline(--rex.lnum);
|
|
if (rex.line == NULL) {
|
|
// can't go before the first line
|
|
rex.line = (uint8_t *)reg_getline(++rex.lnum);
|
|
rex.input = rex.line;
|
|
} else {
|
|
rex.input = rex.line + strlen((char *)rex.line);
|
|
}
|
|
}
|
|
if ((int)(rex.input - rex.line) >= state->val) {
|
|
rex.input -= state->val;
|
|
rex.input -= utf_head_off((char *)rex.line, (char *)rex.input);
|
|
} else {
|
|
rex.input = rex.line;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
if (log_fd != stderr) {
|
|
fclose(log_fd);
|
|
}
|
|
log_fd = NULL;
|
|
#endif
|
|
// Have to clear the lastlist field of the NFA nodes, so that
|
|
// nfa_regmatch() and addstate() can run properly after recursion.
|
|
if (nfa_ll_index == 1) {
|
|
// Already calling nfa_regmatch() recursively. Save the lastlist[1]
|
|
// values and clear them.
|
|
if (*listids == NULL || *listids_len < prog->nstate) {
|
|
xfree(*listids);
|
|
*listids = xmalloc(sizeof(**listids) * (size_t)prog->nstate);
|
|
*listids_len = prog->nstate;
|
|
}
|
|
nfa_save_listids(prog, *listids);
|
|
need_restore = true;
|
|
// any value of rex.nfa_listid will do
|
|
} else {
|
|
// First recursive nfa_regmatch() call, switch to the second lastlist
|
|
// entry. Make sure rex.nfa_listid is different from a previous
|
|
// recursive call, because some states may still have this ID.
|
|
nfa_ll_index++;
|
|
if (rex.nfa_listid <= rex.nfa_alt_listid) {
|
|
rex.nfa_listid = rex.nfa_alt_listid;
|
|
}
|
|
}
|
|
|
|
// Call nfa_regmatch() to check if the current concat matches at this
|
|
// position. The concat ends with the node NFA_END_INVISIBLE
|
|
nfa_endp = endposp;
|
|
const int result = nfa_regmatch(prog, state->out, submatch, m);
|
|
|
|
if (need_restore) {
|
|
nfa_restore_listids(prog, *listids);
|
|
} else {
|
|
nfa_ll_index--;
|
|
rex.nfa_alt_listid = rex.nfa_listid;
|
|
}
|
|
|
|
// restore position in input text
|
|
rex.lnum = save_reglnum;
|
|
if (REG_MULTI) {
|
|
rex.line = (uint8_t *)reg_getline(rex.lnum);
|
|
}
|
|
rex.input = rex.line + save_reginput_col;
|
|
if (result != NFA_TOO_EXPENSIVE) {
|
|
nfa_match = save_nfa_match;
|
|
rex.nfa_listid = save_nfa_listid;
|
|
}
|
|
nfa_endp = save_nfa_endp;
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
open_debug_log(result);
|
|
#endif
|
|
|
|
return result;
|
|
}
|
|
|
|
// Estimate the chance of a match with "state" failing.
|
|
// empty match: 0
|
|
// NFA_ANY: 1
|
|
// specific character: 99
|
|
static int failure_chance(nfa_state_T *state, int depth)
|
|
{
|
|
int c = state->c;
|
|
int l, r;
|
|
|
|
// detect looping
|
|
if (depth > 4) {
|
|
return 1;
|
|
}
|
|
|
|
switch (c) {
|
|
case NFA_SPLIT:
|
|
if (state->out->c == NFA_SPLIT || state->out1->c == NFA_SPLIT) {
|
|
// avoid recursive stuff
|
|
return 1;
|
|
}
|
|
// two alternatives, use the lowest failure chance
|
|
l = failure_chance(state->out, depth + 1);
|
|
r = failure_chance(state->out1, depth + 1);
|
|
return l < r ? l : r;
|
|
|
|
case NFA_ANY:
|
|
// matches anything, unlikely to fail
|
|
return 1;
|
|
|
|
case NFA_MATCH:
|
|
case NFA_MCLOSE:
|
|
case NFA_ANY_COMPOSING:
|
|
// empty match works always
|
|
return 0;
|
|
|
|
case NFA_START_INVISIBLE:
|
|
case NFA_START_INVISIBLE_FIRST:
|
|
case NFA_START_INVISIBLE_NEG:
|
|
case NFA_START_INVISIBLE_NEG_FIRST:
|
|
case NFA_START_INVISIBLE_BEFORE:
|
|
case NFA_START_INVISIBLE_BEFORE_FIRST:
|
|
case NFA_START_INVISIBLE_BEFORE_NEG:
|
|
case NFA_START_INVISIBLE_BEFORE_NEG_FIRST:
|
|
case NFA_START_PATTERN:
|
|
// recursive regmatch is expensive, use low failure chance
|
|
return 5;
|
|
|
|
case NFA_BOL:
|
|
case NFA_EOL:
|
|
case NFA_BOF:
|
|
case NFA_EOF:
|
|
case NFA_NEWL:
|
|
return 99;
|
|
|
|
case NFA_BOW:
|
|
case NFA_EOW:
|
|
return 90;
|
|
|
|
case NFA_MOPEN:
|
|
case NFA_MOPEN1:
|
|
case NFA_MOPEN2:
|
|
case NFA_MOPEN3:
|
|
case NFA_MOPEN4:
|
|
case NFA_MOPEN5:
|
|
case NFA_MOPEN6:
|
|
case NFA_MOPEN7:
|
|
case NFA_MOPEN8:
|
|
case NFA_MOPEN9:
|
|
case NFA_ZOPEN:
|
|
case NFA_ZOPEN1:
|
|
case NFA_ZOPEN2:
|
|
case NFA_ZOPEN3:
|
|
case NFA_ZOPEN4:
|
|
case NFA_ZOPEN5:
|
|
case NFA_ZOPEN6:
|
|
case NFA_ZOPEN7:
|
|
case NFA_ZOPEN8:
|
|
case NFA_ZOPEN9:
|
|
case NFA_ZCLOSE:
|
|
case NFA_ZCLOSE1:
|
|
case NFA_ZCLOSE2:
|
|
case NFA_ZCLOSE3:
|
|
case NFA_ZCLOSE4:
|
|
case NFA_ZCLOSE5:
|
|
case NFA_ZCLOSE6:
|
|
case NFA_ZCLOSE7:
|
|
case NFA_ZCLOSE8:
|
|
case NFA_ZCLOSE9:
|
|
case NFA_NOPEN:
|
|
case NFA_MCLOSE1:
|
|
case NFA_MCLOSE2:
|
|
case NFA_MCLOSE3:
|
|
case NFA_MCLOSE4:
|
|
case NFA_MCLOSE5:
|
|
case NFA_MCLOSE6:
|
|
case NFA_MCLOSE7:
|
|
case NFA_MCLOSE8:
|
|
case NFA_MCLOSE9:
|
|
case NFA_NCLOSE:
|
|
return failure_chance(state->out, depth + 1);
|
|
|
|
case NFA_BACKREF1:
|
|
case NFA_BACKREF2:
|
|
case NFA_BACKREF3:
|
|
case NFA_BACKREF4:
|
|
case NFA_BACKREF5:
|
|
case NFA_BACKREF6:
|
|
case NFA_BACKREF7:
|
|
case NFA_BACKREF8:
|
|
case NFA_BACKREF9:
|
|
case NFA_ZREF1:
|
|
case NFA_ZREF2:
|
|
case NFA_ZREF3:
|
|
case NFA_ZREF4:
|
|
case NFA_ZREF5:
|
|
case NFA_ZREF6:
|
|
case NFA_ZREF7:
|
|
case NFA_ZREF8:
|
|
case NFA_ZREF9:
|
|
// backreferences don't match in many places
|
|
return 94;
|
|
|
|
case NFA_LNUM_GT:
|
|
case NFA_LNUM_LT:
|
|
case NFA_COL_GT:
|
|
case NFA_COL_LT:
|
|
case NFA_VCOL_GT:
|
|
case NFA_VCOL_LT:
|
|
case NFA_MARK_GT:
|
|
case NFA_MARK_LT:
|
|
case NFA_VISUAL:
|
|
// before/after positions don't match very often
|
|
return 85;
|
|
|
|
case NFA_LNUM:
|
|
return 90;
|
|
|
|
case NFA_CURSOR:
|
|
case NFA_COL:
|
|
case NFA_VCOL:
|
|
case NFA_MARK:
|
|
// specific positions rarely match
|
|
return 98;
|
|
|
|
case NFA_COMPOSING:
|
|
return 95;
|
|
|
|
default:
|
|
if (c > 0) {
|
|
// character match fails often
|
|
return 95;
|
|
}
|
|
}
|
|
|
|
// something else, includes character classes
|
|
return 50;
|
|
}
|
|
|
|
// Skip until the char "c" we know a match must start with.
|
|
static int skip_to_start(int c, colnr_T *colp)
|
|
{
|
|
const uint8_t *const s = (uint8_t *)cstrchr((char *)rex.line + *colp, c);
|
|
if (s == NULL) {
|
|
return FAIL;
|
|
}
|
|
*colp = (int)(s - rex.line);
|
|
return OK;
|
|
}
|
|
|
|
// Check for a match with match_text.
|
|
// Called after skip_to_start() has found regstart.
|
|
// Returns zero for no match, 1 for a match.
|
|
static int find_match_text(colnr_T *startcol, int regstart, uint8_t *match_text)
|
|
{
|
|
#define PTR2LEN(x) utf_ptr2len(x)
|
|
|
|
colnr_T col = *startcol;
|
|
int regstart_len = PTR2LEN((char *)rex.line + col);
|
|
|
|
while (true) {
|
|
bool match = true;
|
|
uint8_t *s1 = match_text;
|
|
uint8_t *s2 = rex.line + col + regstart_len; // skip regstart
|
|
while (*s1) {
|
|
int c1_len = PTR2LEN((char *)s1);
|
|
int c1 = utf_ptr2char((char *)s1);
|
|
int c2_len = PTR2LEN((char *)s2);
|
|
int c2 = utf_ptr2char((char *)s2);
|
|
|
|
if ((c1 != c2 && (!rex.reg_ic || utf_fold(c1) != utf_fold(c2)))
|
|
|| c1_len != c2_len) {
|
|
match = false;
|
|
break;
|
|
}
|
|
s1 += c1_len;
|
|
s2 += c2_len;
|
|
}
|
|
if (match
|
|
// check that no composing char follows
|
|
&& !utf_iscomposing(utf_ptr2char((char *)s2))) {
|
|
cleanup_subexpr();
|
|
if (REG_MULTI) {
|
|
rex.reg_startpos[0].lnum = rex.lnum;
|
|
rex.reg_startpos[0].col = col;
|
|
rex.reg_endpos[0].lnum = rex.lnum;
|
|
rex.reg_endpos[0].col = (colnr_T)(s2 - rex.line);
|
|
} else {
|
|
rex.reg_startp[0] = rex.line + col;
|
|
rex.reg_endp[0] = s2;
|
|
}
|
|
*startcol = col;
|
|
return 1L;
|
|
}
|
|
|
|
// Try finding regstart after the current match.
|
|
col += regstart_len; // skip regstart
|
|
if (skip_to_start(regstart, &col) == FAIL) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
*startcol = col;
|
|
return 0L;
|
|
|
|
#undef PTR2LEN
|
|
}
|
|
|
|
static int nfa_did_time_out(void)
|
|
{
|
|
if (nfa_time_limit != NULL && profile_passed_limit(*nfa_time_limit)) {
|
|
if (nfa_timed_out != NULL) {
|
|
*nfa_timed_out = true;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Main matching routine.
|
|
///
|
|
/// Run NFA to determine whether it matches rex.input.
|
|
///
|
|
/// When "nfa_endp" is not NULL it is a required end-of-match position.
|
|
///
|
|
/// Return true if there is a match, false if there is no match,
|
|
/// NFA_TOO_EXPENSIVE if we end up with too many states.
|
|
/// When there is a match "submatch" contains the positions.
|
|
///
|
|
/// Note: Caller must ensure that: start != NULL.
|
|
static int nfa_regmatch(nfa_regprog_T *prog, nfa_state_T *start, regsubs_T *submatch, regsubs_T *m)
|
|
FUNC_ATTR_NONNULL_ARG(1, 2, 4)
|
|
{
|
|
int result = false;
|
|
int flag = 0;
|
|
bool go_to_nextline = false;
|
|
nfa_thread_T *t;
|
|
nfa_list_T list[2];
|
|
int listidx;
|
|
nfa_list_T *thislist;
|
|
nfa_list_T *nextlist;
|
|
int *listids = NULL;
|
|
int listids_len = 0;
|
|
nfa_state_T *add_state;
|
|
bool add_here;
|
|
int add_count;
|
|
int add_off = 0;
|
|
int toplevel = start->c == NFA_MOPEN;
|
|
regsubs_T *r;
|
|
// Some patterns may take a long time to match, especially when using
|
|
// recursive_regmatch(). Allow interrupting them with CTRL-C.
|
|
reg_breakcheck();
|
|
if (got_int) {
|
|
return false;
|
|
}
|
|
if (nfa_did_time_out()) {
|
|
return false;
|
|
}
|
|
|
|
#ifdef NFA_REGEXP_DEBUG_LOG
|
|
FILE *debug = fopen(NFA_REGEXP_DEBUG_LOG, "a");
|
|
|
|
if (debug == NULL) {
|
|
semsg("(NFA) COULD NOT OPEN %s!", NFA_REGEXP_DEBUG_LOG);
|
|
return false;
|
|
}
|
|
#endif
|
|
nfa_match = false;
|
|
|
|
// Allocate memory for the lists of nodes.
|
|
size_t size = (size_t)(prog->nstate + 1) * sizeof(nfa_thread_T);
|
|
list[0].t = xmalloc(size);
|
|
list[0].len = prog->nstate + 1;
|
|
list[1].t = xmalloc(size);
|
|
list[1].len = prog->nstate + 1;
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
log_fd = fopen(NFA_REGEXP_RUN_LOG, "a");
|
|
if (log_fd == NULL) {
|
|
emsg(_(e_log_open_failed));
|
|
log_fd = stderr;
|
|
}
|
|
fprintf(log_fd, "**********************************\n");
|
|
nfa_set_code(start->c);
|
|
fprintf(log_fd, " RUNNING nfa_regmatch() starting with state %d, code %s\n",
|
|
abs(start->id), code);
|
|
fprintf(log_fd, "**********************************\n");
|
|
#endif
|
|
|
|
thislist = &list[0];
|
|
thislist->n = 0;
|
|
thislist->has_pim = false;
|
|
nextlist = &list[1];
|
|
nextlist->n = 0;
|
|
nextlist->has_pim = false;
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd, "(---) STARTSTATE first\n");
|
|
#endif
|
|
thislist->id = rex.nfa_listid + 1;
|
|
|
|
// Inline optimized code for addstate(thislist, start, m, 0) if we know
|
|
// it's the first MOPEN.
|
|
if (toplevel) {
|
|
if (REG_MULTI) {
|
|
m->norm.list.multi[0].start_lnum = rex.lnum;
|
|
m->norm.list.multi[0].start_col = (colnr_T)(rex.input - rex.line);
|
|
m->norm.orig_start_col = m->norm.list.multi[0].start_col;
|
|
} else {
|
|
m->norm.list.line[0].start = rex.input;
|
|
}
|
|
m->norm.in_use = 1;
|
|
r = addstate(thislist, start->out, m, NULL, 0);
|
|
} else {
|
|
r = addstate(thislist, start, m, NULL, 0);
|
|
}
|
|
if (r == NULL) {
|
|
nfa_match = NFA_TOO_EXPENSIVE;
|
|
goto theend;
|
|
}
|
|
|
|
#define ADD_STATE_IF_MATCH(state) \
|
|
if (result) { \
|
|
add_state = (state)->out; \
|
|
add_off = clen; \
|
|
}
|
|
|
|
// Run for each character.
|
|
while (true) {
|
|
int curc = utf_ptr2char((char *)rex.input);
|
|
int clen = utfc_ptr2len((char *)rex.input);
|
|
if (curc == NUL) {
|
|
clen = 0;
|
|
go_to_nextline = false;
|
|
}
|
|
|
|
// swap lists
|
|
thislist = &list[flag];
|
|
nextlist = &list[flag ^= 1];
|
|
nextlist->n = 0; // clear nextlist
|
|
nextlist->has_pim = false;
|
|
rex.nfa_listid++;
|
|
if (prog->re_engine == AUTOMATIC_ENGINE
|
|
&& (rex.nfa_listid >= NFA_MAX_STATES)) {
|
|
// Too many states, retry with old engine.
|
|
nfa_match = NFA_TOO_EXPENSIVE;
|
|
goto theend;
|
|
}
|
|
|
|
thislist->id = rex.nfa_listid;
|
|
nextlist->id = rex.nfa_listid + 1;
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd, "------------------------------------------\n");
|
|
fprintf(log_fd, ">>> Reginput is \"%s\"\n", rex.input);
|
|
fprintf(log_fd,
|
|
">>> Advanced one character... Current char is %c (code %d) \n",
|
|
curc,
|
|
(int)curc);
|
|
fprintf(log_fd, ">>> Thislist has %d states available: ", thislist->n);
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < thislist->n; i++) {
|
|
fprintf(log_fd, "%d ", abs(thislist->t[i].state->id));
|
|
}
|
|
}
|
|
fprintf(log_fd, "\n");
|
|
#endif
|
|
|
|
#ifdef NFA_REGEXP_DEBUG_LOG
|
|
fprintf(debug, "\n-------------------\n");
|
|
#endif
|
|
// If the state lists are empty we can stop.
|
|
if (thislist->n == 0) {
|
|
break;
|
|
}
|
|
|
|
// compute nextlist
|
|
for (listidx = 0; listidx < thislist->n; listidx++) {
|
|
// If the list gets very long there probably is something wrong.
|
|
// At least allow interrupting with CTRL-C.
|
|
reg_breakcheck();
|
|
if (got_int) {
|
|
break;
|
|
}
|
|
if (nfa_time_limit != NULL && ++nfa_time_count == 20) {
|
|
nfa_time_count = 0;
|
|
if (nfa_did_time_out()) {
|
|
break;
|
|
}
|
|
}
|
|
t = &thislist->t[listidx];
|
|
|
|
#ifdef NFA_REGEXP_DEBUG_LOG
|
|
nfa_set_code(t->state->c);
|
|
fprintf(debug, "%s, ", code);
|
|
#endif
|
|
#ifdef REGEXP_DEBUG
|
|
{
|
|
int col;
|
|
|
|
if (t->subs.norm.in_use <= 0) {
|
|
col = -1;
|
|
} else if (REG_MULTI) {
|
|
col = t->subs.norm.list.multi[0].start_col;
|
|
} else {
|
|
col = (int)(t->subs.norm.list.line[0].start - rex.line);
|
|
}
|
|
nfa_set_code(t->state->c);
|
|
fprintf(log_fd, "(%d) char %d %s (start col %d)%s... \n",
|
|
abs(t->state->id), (int)t->state->c, code, col,
|
|
pim_info(&t->pim));
|
|
}
|
|
#endif
|
|
|
|
// Handle the possible codes of the current state.
|
|
// The most important is NFA_MATCH.
|
|
add_state = NULL;
|
|
add_here = false;
|
|
add_count = 0;
|
|
switch (t->state->c) {
|
|
case NFA_MATCH:
|
|
// If the match is not at the start of the line, ends before a
|
|
// composing characters and rex.reg_icombine is not set, that
|
|
// is not really a match.
|
|
if (!rex.reg_icombine
|
|
&& rex.input != rex.line
|
|
&& utf_iscomposing(curc)) {
|
|
break;
|
|
}
|
|
nfa_match = true;
|
|
copy_sub(&submatch->norm, &t->subs.norm);
|
|
if (rex.nfa_has_zsubexpr) {
|
|
copy_sub(&submatch->synt, &t->subs.synt);
|
|
}
|
|
#ifdef REGEXP_DEBUG
|
|
log_subsexpr(&t->subs);
|
|
#endif
|
|
// Found the left-most longest match, do not look at any other
|
|
// states at this position. When the list of states is going
|
|
// to be empty quit without advancing, so that "rex.input" is
|
|
// correct.
|
|
if (nextlist->n == 0) {
|
|
clen = 0;
|
|
}
|
|
goto nextchar;
|
|
|
|
case NFA_END_INVISIBLE:
|
|
case NFA_END_INVISIBLE_NEG:
|
|
case NFA_END_PATTERN:
|
|
// This is only encountered after a NFA_START_INVISIBLE or
|
|
// NFA_START_INVISIBLE_BEFORE node.
|
|
// They surround a zero-width group, used with "\@=", "\&",
|
|
// "\@!", "\@<=" and "\@<!".
|
|
// If we got here, it means that the current "invisible" group
|
|
// finished successfully, so return control to the parent
|
|
// nfa_regmatch(). For a look-behind match only when it ends
|
|
// in the position in "nfa_endp".
|
|
// Submatches are stored in *m, and used in the parent call.
|
|
#ifdef REGEXP_DEBUG
|
|
if (nfa_endp != NULL) {
|
|
if (REG_MULTI) {
|
|
fprintf(log_fd,
|
|
"Current lnum: %d, endp lnum: %d;"
|
|
" current col: %d, endp col: %d\n",
|
|
(int)rex.lnum,
|
|
(int)nfa_endp->se_u.pos.lnum,
|
|
(int)(rex.input - rex.line),
|
|
nfa_endp->se_u.pos.col);
|
|
} else {
|
|
fprintf(log_fd, "Current col: %d, endp col: %d\n",
|
|
(int)(rex.input - rex.line),
|
|
(int)(nfa_endp->se_u.ptr - rex.input));
|
|
}
|
|
}
|
|
#endif
|
|
// If "nfa_endp" is set it's only a match if it ends at
|
|
// "nfa_endp"
|
|
if (nfa_endp != NULL
|
|
&& (REG_MULTI
|
|
? (rex.lnum != nfa_endp->se_u.pos.lnum
|
|
|| (int)(rex.input - rex.line) != nfa_endp->se_u.pos.col)
|
|
: rex.input != nfa_endp->se_u.ptr)) {
|
|
break;
|
|
}
|
|
// do not set submatches for \@!
|
|
if (t->state->c != NFA_END_INVISIBLE_NEG) {
|
|
copy_sub(&m->norm, &t->subs.norm);
|
|
if (rex.nfa_has_zsubexpr) {
|
|
copy_sub(&m->synt, &t->subs.synt);
|
|
}
|
|
}
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd, "Match found:\n");
|
|
log_subsexpr(m);
|
|
#endif
|
|
nfa_match = true;
|
|
// See comment above at "goto nextchar".
|
|
if (nextlist->n == 0) {
|
|
clen = 0;
|
|
}
|
|
goto nextchar;
|
|
|
|
case NFA_START_INVISIBLE:
|
|
case NFA_START_INVISIBLE_FIRST:
|
|
case NFA_START_INVISIBLE_NEG:
|
|
case NFA_START_INVISIBLE_NEG_FIRST:
|
|
case NFA_START_INVISIBLE_BEFORE:
|
|
case NFA_START_INVISIBLE_BEFORE_FIRST:
|
|
case NFA_START_INVISIBLE_BEFORE_NEG:
|
|
case NFA_START_INVISIBLE_BEFORE_NEG_FIRST:
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd, "Failure chance invisible: %d, what follows: %d\n",
|
|
failure_chance(t->state->out, 0),
|
|
failure_chance(t->state->out1->out, 0));
|
|
#endif
|
|
// Do it directly if there already is a PIM or when
|
|
// nfa_postprocess() detected it will work better.
|
|
if (t->pim.result != NFA_PIM_UNUSED
|
|
|| t->state->c == NFA_START_INVISIBLE_FIRST
|
|
|| t->state->c == NFA_START_INVISIBLE_NEG_FIRST
|
|
|| t->state->c == NFA_START_INVISIBLE_BEFORE_FIRST
|
|
|| t->state->c == NFA_START_INVISIBLE_BEFORE_NEG_FIRST) {
|
|
int in_use = m->norm.in_use;
|
|
|
|
// Copy submatch info for the recursive call, opposite
|
|
// of what happens on success below.
|
|
copy_sub_off(&m->norm, &t->subs.norm);
|
|
if (rex.nfa_has_zsubexpr) {
|
|
copy_sub_off(&m->synt, &t->subs.synt);
|
|
}
|
|
// First try matching the invisible match, then what
|
|
// follows.
|
|
result = recursive_regmatch(t->state, NULL, prog, submatch, m,
|
|
&listids, &listids_len);
|
|
if (result == NFA_TOO_EXPENSIVE) {
|
|
nfa_match = result;
|
|
goto theend;
|
|
}
|
|
|
|
// for \@! and \@<! it is a match when the result is
|
|
// false
|
|
if (result != (t->state->c == NFA_START_INVISIBLE_NEG
|
|
|| t->state->c == NFA_START_INVISIBLE_NEG_FIRST
|
|
|| t->state->c
|
|
== NFA_START_INVISIBLE_BEFORE_NEG
|
|
|| t->state->c
|
|
== NFA_START_INVISIBLE_BEFORE_NEG_FIRST)) {
|
|
// Copy submatch info from the recursive call
|
|
copy_sub_off(&t->subs.norm, &m->norm);
|
|
if (rex.nfa_has_zsubexpr) {
|
|
copy_sub_off(&t->subs.synt, &m->synt);
|
|
}
|
|
// If the pattern has \ze and it matched in the
|
|
// sub pattern, use it.
|
|
copy_ze_off(&t->subs.norm, &m->norm);
|
|
|
|
// t->state->out1 is the corresponding
|
|
// END_INVISIBLE node; Add its out to the current
|
|
// list (zero-width match).
|
|
add_here = true;
|
|
add_state = t->state->out1->out;
|
|
}
|
|
m->norm.in_use = in_use;
|
|
} else {
|
|
nfa_pim_T pim;
|
|
|
|
// First try matching what follows. Only if a match
|
|
// is found verify the invisible match matches. Add a
|
|
// nfa_pim_T to the following states, it contains info
|
|
// about the invisible match.
|
|
pim.state = t->state;
|
|
pim.result = NFA_PIM_TODO;
|
|
pim.subs.norm.in_use = 0;
|
|
pim.subs.synt.in_use = 0;
|
|
if (REG_MULTI) {
|
|
pim.end.pos.col = (int)(rex.input - rex.line);
|
|
pim.end.pos.lnum = rex.lnum;
|
|
} else {
|
|
pim.end.ptr = rex.input;
|
|
}
|
|
// t->state->out1 is the corresponding END_INVISIBLE
|
|
// node; Add its out to the current list (zero-width
|
|
// match).
|
|
if (addstate_here(thislist, t->state->out1->out, &t->subs,
|
|
&pim, &listidx) == NULL) {
|
|
nfa_match = NFA_TOO_EXPENSIVE;
|
|
goto theend;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case NFA_START_PATTERN: {
|
|
nfa_state_T *skip = NULL;
|
|
#ifdef REGEXP_DEBUG
|
|
int skip_lid = 0;
|
|
#endif
|
|
|
|
// There is no point in trying to match the pattern if the
|
|
// output state is not going to be added to the list.
|
|
if (state_in_list(nextlist, t->state->out1->out, &t->subs)) {
|
|
skip = t->state->out1->out;
|
|
#ifdef REGEXP_DEBUG
|
|
skip_lid = nextlist->id;
|
|
#endif
|
|
} else if (state_in_list(nextlist,
|
|
t->state->out1->out->out, &t->subs)) {
|
|
skip = t->state->out1->out->out;
|
|
#ifdef REGEXP_DEBUG
|
|
skip_lid = nextlist->id;
|
|
#endif
|
|
} else if (state_in_list(thislist,
|
|
t->state->out1->out->out, &t->subs)) {
|
|
skip = t->state->out1->out->out;
|
|
#ifdef REGEXP_DEBUG
|
|
skip_lid = thislist->id;
|
|
#endif
|
|
}
|
|
if (skip != NULL) {
|
|
#ifdef REGEXP_DEBUG
|
|
nfa_set_code(skip->c);
|
|
fprintf(log_fd,
|
|
"> Not trying to match pattern, output state %d is already in list %d. char %d: %s\n",
|
|
abs(skip->id), skip_lid, skip->c, code);
|
|
#endif
|
|
break;
|
|
}
|
|
// Copy submatch info to the recursive call, opposite of what
|
|
// happens afterwards.
|
|
copy_sub_off(&m->norm, &t->subs.norm);
|
|
if (rex.nfa_has_zsubexpr) {
|
|
copy_sub_off(&m->synt, &t->subs.synt);
|
|
}
|
|
|
|
// First try matching the pattern.
|
|
result = recursive_regmatch(t->state, NULL, prog, submatch, m,
|
|
&listids, &listids_len);
|
|
if (result == NFA_TOO_EXPENSIVE) {
|
|
nfa_match = result;
|
|
goto theend;
|
|
}
|
|
if (result) {
|
|
int bytelen;
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd, "NFA_START_PATTERN matches:\n");
|
|
log_subsexpr(m);
|
|
#endif
|
|
// Copy submatch info from the recursive call
|
|
copy_sub_off(&t->subs.norm, &m->norm);
|
|
if (rex.nfa_has_zsubexpr) {
|
|
copy_sub_off(&t->subs.synt, &m->synt);
|
|
}
|
|
// Now we need to skip over the matched text and then
|
|
// continue with what follows.
|
|
if (REG_MULTI) {
|
|
// TODO(RE): multi-line match
|
|
bytelen = m->norm.list.multi[0].end_col
|
|
- (int)(rex.input - rex.line);
|
|
} else {
|
|
bytelen = (int)(m->norm.list.line[0].end - rex.input);
|
|
}
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd, "NFA_START_PATTERN length: %d\n", bytelen);
|
|
#endif
|
|
if (bytelen == 0) {
|
|
// empty match, output of corresponding
|
|
// NFA_END_PATTERN/NFA_SKIP to be used at current
|
|
// position
|
|
add_here = true;
|
|
add_state = t->state->out1->out->out;
|
|
} else if (bytelen <= clen) {
|
|
// match current character, output of corresponding
|
|
// NFA_END_PATTERN to be used at next position.
|
|
add_state = t->state->out1->out->out;
|
|
add_off = clen;
|
|
} else {
|
|
// skip over the matched characters, set character
|
|
// count in NFA_SKIP
|
|
add_state = t->state->out1->out;
|
|
add_off = bytelen;
|
|
add_count = bytelen - clen;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case NFA_BOL:
|
|
if (rex.input == rex.line) {
|
|
add_here = true;
|
|
add_state = t->state->out;
|
|
}
|
|
break;
|
|
|
|
case NFA_EOL:
|
|
if (curc == NUL) {
|
|
add_here = true;
|
|
add_state = t->state->out;
|
|
}
|
|
break;
|
|
|
|
case NFA_BOW:
|
|
result = true;
|
|
|
|
if (curc == NUL) {
|
|
result = false;
|
|
} else {
|
|
int this_class;
|
|
|
|
// Get class of current and previous char (if it exists).
|
|
this_class = mb_get_class_tab((char *)rex.input, rex.reg_buf->b_chartab);
|
|
if (this_class <= 1) {
|
|
result = false;
|
|
} else if (reg_prev_class() == this_class) {
|
|
result = false;
|
|
}
|
|
}
|
|
if (result) {
|
|
add_here = true;
|
|
add_state = t->state->out;
|
|
}
|
|
break;
|
|
|
|
case NFA_EOW:
|
|
result = true;
|
|
if (rex.input == rex.line) {
|
|
result = false;
|
|
} else {
|
|
int this_class, prev_class;
|
|
|
|
// Get class of current and previous char (if it exists).
|
|
this_class = mb_get_class_tab((char *)rex.input, rex.reg_buf->b_chartab);
|
|
prev_class = reg_prev_class();
|
|
if (this_class == prev_class
|
|
|| prev_class == 0 || prev_class == 1) {
|
|
result = false;
|
|
}
|
|
}
|
|
if (result) {
|
|
add_here = true;
|
|
add_state = t->state->out;
|
|
}
|
|
break;
|
|
|
|
case NFA_BOF:
|
|
if (rex.lnum == 0 && rex.input == rex.line
|
|
&& (!REG_MULTI || rex.reg_firstlnum == 1)) {
|
|
add_here = true;
|
|
add_state = t->state->out;
|
|
}
|
|
break;
|
|
|
|
case NFA_EOF:
|
|
if (rex.lnum == rex.reg_maxline && curc == NUL) {
|
|
add_here = true;
|
|
add_state = t->state->out;
|
|
}
|
|
break;
|
|
|
|
case NFA_COMPOSING: {
|
|
int mc = curc;
|
|
int len = 0;
|
|
nfa_state_T *end;
|
|
nfa_state_T *sta;
|
|
int cchars[MAX_MCO];
|
|
int ccount = 0;
|
|
int j;
|
|
|
|
sta = t->state->out;
|
|
len = 0;
|
|
if (utf_iscomposing(sta->c)) {
|
|
// Only match composing character(s), ignore base
|
|
// character. Used for ".{composing}" and "{composing}"
|
|
// (no preceding character).
|
|
len += utf_char2len(mc);
|
|
}
|
|
if (rex.reg_icombine && len == 0) {
|
|
// If \Z was present, then ignore composing characters.
|
|
// When ignoring the base character this always matches.
|
|
if (sta->c != curc) {
|
|
result = FAIL;
|
|
} else {
|
|
result = OK;
|
|
}
|
|
while (sta->c != NFA_END_COMPOSING) {
|
|
sta = sta->out;
|
|
}
|
|
} else if (len > 0 || mc == sta->c) {
|
|
// Check base character matches first, unless ignored.
|
|
if (len == 0) {
|
|
len += utf_char2len(mc);
|
|
sta = sta->out;
|
|
}
|
|
|
|
// We don't care about the order of composing characters.
|
|
// Get them into cchars[] first.
|
|
while (len < clen) {
|
|
mc = utf_ptr2char((char *)rex.input + len);
|
|
cchars[ccount++] = mc;
|
|
len += utf_char2len(mc);
|
|
if (ccount == MAX_MCO) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Check that each composing char in the pattern matches a
|
|
// composing char in the text. We do not check if all
|
|
// composing chars are matched.
|
|
result = OK;
|
|
while (sta->c != NFA_END_COMPOSING) {
|
|
for (j = 0; j < ccount; j++) {
|
|
if (cchars[j] == sta->c) {
|
|
break;
|
|
}
|
|
}
|
|
if (j == ccount) {
|
|
result = FAIL;
|
|
break;
|
|
}
|
|
sta = sta->out;
|
|
}
|
|
} else {
|
|
result = FAIL;
|
|
}
|
|
|
|
end = t->state->out1; // NFA_END_COMPOSING
|
|
ADD_STATE_IF_MATCH(end);
|
|
break;
|
|
}
|
|
|
|
case NFA_NEWL:
|
|
if (curc == NUL && !rex.reg_line_lbr && REG_MULTI
|
|
&& rex.lnum <= rex.reg_maxline) {
|
|
go_to_nextline = true;
|
|
// Pass -1 for the offset, which means taking the position
|
|
// at the start of the next line.
|
|
add_state = t->state->out;
|
|
add_off = -1;
|
|
} else if (curc == '\n' && rex.reg_line_lbr) {
|
|
// match \n as if it is an ordinary character
|
|
add_state = t->state->out;
|
|
add_off = 1;
|
|
}
|
|
break;
|
|
|
|
case NFA_START_COLL:
|
|
case NFA_START_NEG_COLL: {
|
|
// What follows is a list of characters, until NFA_END_COLL.
|
|
// One of them must match or none of them must match.
|
|
nfa_state_T *state;
|
|
int result_if_matched;
|
|
int c1, c2;
|
|
|
|
// Never match EOL. If it's part of the collection it is added
|
|
// as a separate state with an OR.
|
|
if (curc == NUL) {
|
|
break;
|
|
}
|
|
|
|
state = t->state->out;
|
|
result_if_matched = (t->state->c == NFA_START_COLL);
|
|
while (true) {
|
|
if (state->c == NFA_COMPOSING) {
|
|
int mc = curc;
|
|
int len = 0;
|
|
nfa_state_T *end;
|
|
nfa_state_T *sta;
|
|
int cchars[MAX_MCO];
|
|
int ccount = 0;
|
|
int j;
|
|
|
|
sta = t->state->out->out;
|
|
if (utf_iscomposing(sta->c)) {
|
|
// Only match composing character(s), ignore base
|
|
// character. Used for ".{composing}" and "{composing}"
|
|
// (no preceding character).
|
|
len += utf_char2len(mc);
|
|
}
|
|
if (rex.reg_icombine && len == 0) {
|
|
// If \Z was present, then ignore composing characters.
|
|
// When ignoring the base character this always matches.
|
|
if (sta->c != curc) {
|
|
result = FAIL;
|
|
} else {
|
|
result = OK;
|
|
}
|
|
while (sta->c != NFA_END_COMPOSING) {
|
|
sta = sta->out;
|
|
}
|
|
}
|
|
// Check base character matches first, unless ignored.
|
|
else if (len > 0 || mc == sta->c) {
|
|
if (len == 0) {
|
|
len += utf_char2len(mc);
|
|
sta = sta->out;
|
|
}
|
|
|
|
// We don't care about the order of composing characters.
|
|
// Get them into cchars[] first.
|
|
while (len < clen) {
|
|
mc = utf_ptr2char((char *)rex.input + len);
|
|
cchars[ccount++] = mc;
|
|
len += utf_char2len(mc);
|
|
if (ccount == MAX_MCO) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Check that each composing char in the pattern matches a
|
|
// composing char in the text. We do not check if all
|
|
// composing chars are matched.
|
|
result = OK;
|
|
while (sta->c != NFA_END_COMPOSING) {
|
|
for (j = 0; j < ccount; j++) {
|
|
if (cchars[j] == sta->c) {
|
|
break;
|
|
}
|
|
}
|
|
if (j == ccount) {
|
|
result = FAIL;
|
|
break;
|
|
}
|
|
sta = sta->out;
|
|
}
|
|
} else {
|
|
result = FAIL;
|
|
}
|
|
|
|
if (t->state->out->out1->c == NFA_END_COMPOSING) {
|
|
end = t->state->out->out1;
|
|
ADD_STATE_IF_MATCH(end);
|
|
}
|
|
break;
|
|
}
|
|
if (state->c == NFA_END_COLL) {
|
|
result = !result_if_matched;
|
|
break;
|
|
}
|
|
if (state->c == NFA_RANGE_MIN) {
|
|
c1 = state->val;
|
|
state = state->out; // advance to NFA_RANGE_MAX
|
|
c2 = state->val;
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd, "NFA_RANGE_MIN curc=%d c1=%d c2=%d\n",
|
|
curc, c1, c2);
|
|
#endif
|
|
if (curc >= c1 && curc <= c2) {
|
|
result = result_if_matched;
|
|
break;
|
|
}
|
|
if (rex.reg_ic) {
|
|
int curc_low = utf_fold(curc);
|
|
int done = false;
|
|
|
|
for (; c1 <= c2; c1++) {
|
|
if (utf_fold(c1) == curc_low) {
|
|
result = result_if_matched;
|
|
done = true;
|
|
break;
|
|
}
|
|
}
|
|
if (done) {
|
|
break;
|
|
}
|
|
}
|
|
} else if (state->c < 0 ? check_char_class(state->c, curc)
|
|
: (curc == state->c
|
|
|| (rex.reg_ic
|
|
&& utf_fold(curc) == utf_fold(state->c)))) {
|
|
result = result_if_matched;
|
|
break;
|
|
}
|
|
state = state->out;
|
|
}
|
|
if (result) {
|
|
// next state is in out of the NFA_END_COLL, out1 of
|
|
// START points to the END state
|
|
add_state = t->state->out1->out;
|
|
add_off = clen;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case NFA_ANY:
|
|
// Any char except '\0', (end of input) does not match.
|
|
if (curc > 0) {
|
|
add_state = t->state->out;
|
|
add_off = clen;
|
|
}
|
|
break;
|
|
|
|
case NFA_ANY_COMPOSING:
|
|
// On a composing character skip over it. Otherwise do
|
|
// nothing. Always matches.
|
|
if (utf_iscomposing(curc)) {
|
|
add_off = clen;
|
|
} else {
|
|
add_here = true;
|
|
add_off = 0;
|
|
}
|
|
add_state = t->state->out;
|
|
break;
|
|
|
|
// Character classes like \a for alpha, \d for digit etc.
|
|
case NFA_IDENT: // \i
|
|
result = vim_isIDc(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_SIDENT: // \I
|
|
result = !ascii_isdigit(curc) && vim_isIDc(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_KWORD: // \k
|
|
result = vim_iswordp_buf((char *)rex.input, rex.reg_buf);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_SKWORD: // \K
|
|
result = !ascii_isdigit(curc)
|
|
&& vim_iswordp_buf((char *)rex.input, rex.reg_buf);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_FNAME: // \f
|
|
result = vim_isfilec(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_SFNAME: // \F
|
|
result = !ascii_isdigit(curc) && vim_isfilec(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_PRINT: // \p
|
|
result = vim_isprintc(utf_ptr2char((char *)rex.input));
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_SPRINT: // \P
|
|
result = !ascii_isdigit(curc) && vim_isprintc(utf_ptr2char((char *)rex.input));
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_WHITE: // \s
|
|
result = ascii_iswhite(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_NWHITE: // \S
|
|
result = curc != NUL && !ascii_iswhite(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_DIGIT: // \d
|
|
result = ri_digit(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_NDIGIT: // \D
|
|
result = curc != NUL && !ri_digit(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_HEX: // \x
|
|
result = ri_hex(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_NHEX: // \X
|
|
result = curc != NUL && !ri_hex(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_OCTAL: // \o
|
|
result = ri_octal(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_NOCTAL: // \O
|
|
result = curc != NUL && !ri_octal(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_WORD: // \w
|
|
result = ri_word(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_NWORD: // \W
|
|
result = curc != NUL && !ri_word(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_HEAD: // \h
|
|
result = ri_head(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_NHEAD: // \H
|
|
result = curc != NUL && !ri_head(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_ALPHA: // \a
|
|
result = ri_alpha(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_NALPHA: // \A
|
|
result = curc != NUL && !ri_alpha(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_LOWER: // \l
|
|
result = ri_lower(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_NLOWER: // \L
|
|
result = curc != NUL && !ri_lower(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_UPPER: // \u
|
|
result = ri_upper(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_NUPPER: // \U
|
|
result = curc != NUL && !ri_upper(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_LOWER_IC: // [a-z]
|
|
result = ri_lower(curc) || (rex.reg_ic && ri_upper(curc));
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_NLOWER_IC: // [^a-z]
|
|
result = curc != NUL
|
|
&& !(ri_lower(curc) || (rex.reg_ic && ri_upper(curc)));
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_UPPER_IC: // [A-Z]
|
|
result = ri_upper(curc) || (rex.reg_ic && ri_lower(curc));
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_NUPPER_IC: // [^A-Z]
|
|
result = curc != NUL
|
|
&& !(ri_upper(curc) || (rex.reg_ic && ri_lower(curc)));
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_BACKREF1:
|
|
case NFA_BACKREF2:
|
|
case NFA_BACKREF3:
|
|
case NFA_BACKREF4:
|
|
case NFA_BACKREF5:
|
|
case NFA_BACKREF6:
|
|
case NFA_BACKREF7:
|
|
case NFA_BACKREF8:
|
|
case NFA_BACKREF9:
|
|
case NFA_ZREF1:
|
|
case NFA_ZREF2:
|
|
case NFA_ZREF3:
|
|
case NFA_ZREF4:
|
|
case NFA_ZREF5:
|
|
case NFA_ZREF6:
|
|
case NFA_ZREF7:
|
|
case NFA_ZREF8:
|
|
case NFA_ZREF9:
|
|
// \1 .. \9 \z1 .. \z9
|
|
{
|
|
int subidx;
|
|
int bytelen;
|
|
|
|
if (t->state->c <= NFA_BACKREF9) {
|
|
subidx = t->state->c - NFA_BACKREF1 + 1;
|
|
result = match_backref(&t->subs.norm, subidx, &bytelen);
|
|
} else {
|
|
subidx = t->state->c - NFA_ZREF1 + 1;
|
|
result = match_zref(subidx, &bytelen);
|
|
}
|
|
|
|
if (result) {
|
|
if (bytelen == 0) {
|
|
// empty match always works, output of NFA_SKIP to be
|
|
// used next
|
|
add_here = true;
|
|
add_state = t->state->out->out;
|
|
} else if (bytelen <= clen) {
|
|
// match current character, jump ahead to out of
|
|
// NFA_SKIP
|
|
add_state = t->state->out->out;
|
|
add_off = clen;
|
|
} else {
|
|
// skip over the matched characters, set character
|
|
// count in NFA_SKIP
|
|
add_state = t->state->out;
|
|
add_off = bytelen;
|
|
add_count = bytelen - clen;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case NFA_SKIP:
|
|
// character of previous matching \1 .. \9 or \@>
|
|
if (t->count - clen <= 0) {
|
|
// end of match, go to what follows
|
|
add_state = t->state->out;
|
|
add_off = clen;
|
|
} else {
|
|
// add state again with decremented count
|
|
add_state = t->state;
|
|
add_off = 0;
|
|
add_count = t->count - clen;
|
|
}
|
|
break;
|
|
|
|
case NFA_LNUM:
|
|
case NFA_LNUM_GT:
|
|
case NFA_LNUM_LT:
|
|
assert(t->state->val >= 0
|
|
&& !((rex.reg_firstlnum > 0
|
|
&& rex.lnum > LONG_MAX - rex.reg_firstlnum)
|
|
|| (rex.reg_firstlnum < 0
|
|
&& rex.lnum < LONG_MIN + rex.reg_firstlnum))
|
|
&& rex.lnum + rex.reg_firstlnum >= 0);
|
|
result = (REG_MULTI
|
|
&& nfa_re_num_cmp((uintmax_t)t->state->val,
|
|
t->state->c - NFA_LNUM,
|
|
(uintmax_t)rex.lnum + (uintmax_t)rex.reg_firstlnum));
|
|
if (result) {
|
|
add_here = true;
|
|
add_state = t->state->out;
|
|
}
|
|
break;
|
|
|
|
case NFA_COL:
|
|
case NFA_COL_GT:
|
|
case NFA_COL_LT:
|
|
assert(t->state->val >= 0
|
|
&& rex.input >= rex.line
|
|
&& (uintmax_t)(rex.input - rex.line) <= UINTMAX_MAX - 1);
|
|
result = nfa_re_num_cmp((uintmax_t)t->state->val,
|
|
t->state->c - NFA_COL,
|
|
(uintmax_t)(rex.input - rex.line + 1));
|
|
if (result) {
|
|
add_here = true;
|
|
add_state = t->state->out;
|
|
}
|
|
break;
|
|
|
|
case NFA_VCOL:
|
|
case NFA_VCOL_GT:
|
|
case NFA_VCOL_LT: {
|
|
int op = t->state->c - NFA_VCOL;
|
|
colnr_T col = (colnr_T)(rex.input - rex.line);
|
|
|
|
// Bail out quickly when there can't be a match, avoid the overhead of
|
|
// win_linetabsize() on long lines.
|
|
if (op != 1 && col > t->state->val * MB_MAXBYTES) {
|
|
break;
|
|
}
|
|
|
|
result = false;
|
|
win_T *wp = rex.reg_win == NULL ? curwin : rex.reg_win;
|
|
if (op == 1 && col - 1 > t->state->val && col > 100) {
|
|
int64_t ts = (int64_t)wp->w_buffer->b_p_ts;
|
|
|
|
// Guess that a character won't use more columns than 'tabstop',
|
|
// with a minimum of 4.
|
|
if (ts < 4) {
|
|
ts = 4;
|
|
}
|
|
result = col > t->state->val * ts;
|
|
}
|
|
if (!result) {
|
|
int lts = win_linetabsize(wp, rex.reg_firstlnum + rex.lnum, (char *)rex.line, col);
|
|
assert(t->state->val >= 0);
|
|
result = nfa_re_num_cmp((uintmax_t)t->state->val, op, (uintmax_t)lts + 1);
|
|
}
|
|
if (result) {
|
|
add_here = true;
|
|
add_state = t->state->out;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case NFA_MARK:
|
|
case NFA_MARK_GT:
|
|
case NFA_MARK_LT: {
|
|
size_t col = REG_MULTI ? (size_t)(rex.input - rex.line) : 0;
|
|
fmark_T *fm = mark_get(rex.reg_buf, curwin, NULL, kMarkBufLocal, t->state->val);
|
|
|
|
// Line may have been freed, get it again.
|
|
if (REG_MULTI) {
|
|
rex.line = (uint8_t *)reg_getline(rex.lnum);
|
|
rex.input = rex.line + col;
|
|
}
|
|
|
|
// Compare the mark position to the match position, if the mark
|
|
// exists and mark is set in reg_buf.
|
|
if (fm != NULL && fm->mark.lnum > 0) {
|
|
pos_T *pos = &fm->mark;
|
|
const colnr_T pos_col = pos->lnum == rex.lnum + rex.reg_firstlnum
|
|
&& pos->col == MAXCOL
|
|
? (colnr_T)strlen(reg_getline(pos->lnum - rex.reg_firstlnum))
|
|
: pos->col;
|
|
|
|
result = pos->lnum == rex.lnum + rex.reg_firstlnum
|
|
? (pos_col == (colnr_T)(rex.input - rex.line)
|
|
? t->state->c == NFA_MARK
|
|
: (pos_col < (colnr_T)(rex.input - rex.line)
|
|
? t->state->c == NFA_MARK_GT
|
|
: t->state->c == NFA_MARK_LT))
|
|
: (pos->lnum < rex.lnum + rex.reg_firstlnum
|
|
? t->state->c == NFA_MARK_GT
|
|
: t->state->c == NFA_MARK_LT);
|
|
if (result) {
|
|
add_here = true;
|
|
add_state = t->state->out;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case NFA_CURSOR:
|
|
result = rex.reg_win != NULL
|
|
&& (rex.lnum + rex.reg_firstlnum == rex.reg_win->w_cursor.lnum)
|
|
&& ((colnr_T)(rex.input - rex.line) == rex.reg_win->w_cursor.col);
|
|
if (result) {
|
|
add_here = true;
|
|
add_state = t->state->out;
|
|
}
|
|
break;
|
|
|
|
case NFA_VISUAL:
|
|
result = reg_match_visual();
|
|
if (result) {
|
|
add_here = true;
|
|
add_state = t->state->out;
|
|
}
|
|
break;
|
|
|
|
case NFA_MOPEN1:
|
|
case NFA_MOPEN2:
|
|
case NFA_MOPEN3:
|
|
case NFA_MOPEN4:
|
|
case NFA_MOPEN5:
|
|
case NFA_MOPEN6:
|
|
case NFA_MOPEN7:
|
|
case NFA_MOPEN8:
|
|
case NFA_MOPEN9:
|
|
case NFA_ZOPEN:
|
|
case NFA_ZOPEN1:
|
|
case NFA_ZOPEN2:
|
|
case NFA_ZOPEN3:
|
|
case NFA_ZOPEN4:
|
|
case NFA_ZOPEN5:
|
|
case NFA_ZOPEN6:
|
|
case NFA_ZOPEN7:
|
|
case NFA_ZOPEN8:
|
|
case NFA_ZOPEN9:
|
|
case NFA_NOPEN:
|
|
case NFA_ZSTART:
|
|
// These states are only added to be able to bail out when
|
|
// they are added again, nothing is to be done.
|
|
break;
|
|
|
|
default: // regular character
|
|
{
|
|
int c = t->state->c;
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
if (c < 0) {
|
|
siemsg("INTERNAL: Negative state char: %" PRId64, (int64_t)c);
|
|
}
|
|
#endif
|
|
result = (c == curc);
|
|
|
|
if (!result && rex.reg_ic) {
|
|
result = utf_fold(c) == utf_fold(curc);
|
|
}
|
|
|
|
// If rex.reg_icombine is not set only skip over the character
|
|
// itself. When it is set skip over composing characters.
|
|
if (result && !rex.reg_icombine) {
|
|
clen = utf_ptr2len((char *)rex.input);
|
|
}
|
|
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
}
|
|
} // switch (t->state->c)
|
|
|
|
if (add_state != NULL) {
|
|
nfa_pim_T *pim;
|
|
nfa_pim_T pim_copy;
|
|
|
|
if (t->pim.result == NFA_PIM_UNUSED) {
|
|
pim = NULL;
|
|
} else {
|
|
pim = &t->pim;
|
|
}
|
|
|
|
// Handle the postponed invisible match if the match might end
|
|
// without advancing and before the end of the line.
|
|
if (pim != NULL && (clen == 0 || match_follows(add_state, 0))) {
|
|
if (pim->result == NFA_PIM_TODO) {
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd, "\n");
|
|
fprintf(log_fd, "==================================\n");
|
|
fprintf(log_fd, "Postponed recursive nfa_regmatch()\n");
|
|
fprintf(log_fd, "\n");
|
|
#endif
|
|
result = recursive_regmatch(pim->state, pim, prog, submatch, m,
|
|
&listids, &listids_len);
|
|
pim->result = result ? NFA_PIM_MATCH : NFA_PIM_NOMATCH;
|
|
// for \@! and \@<! it is a match when the result is
|
|
// false
|
|
if (result != (pim->state->c == NFA_START_INVISIBLE_NEG
|
|
|| pim->state->c == NFA_START_INVISIBLE_NEG_FIRST
|
|
|| pim->state->c
|
|
== NFA_START_INVISIBLE_BEFORE_NEG
|
|
|| pim->state->c
|
|
== NFA_START_INVISIBLE_BEFORE_NEG_FIRST)) {
|
|
// Copy submatch info from the recursive call
|
|
copy_sub_off(&pim->subs.norm, &m->norm);
|
|
if (rex.nfa_has_zsubexpr) {
|
|
copy_sub_off(&pim->subs.synt, &m->synt);
|
|
}
|
|
}
|
|
} else {
|
|
result = (pim->result == NFA_PIM_MATCH);
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd, "\n");
|
|
fprintf(log_fd,
|
|
"Using previous recursive nfa_regmatch() result, result == %d\n",
|
|
pim->result);
|
|
fprintf(log_fd, "MATCH = %s\n", result ? "OK" : "false");
|
|
fprintf(log_fd, "\n");
|
|
#endif
|
|
}
|
|
|
|
// for \@! and \@<! it is a match when result is false
|
|
if (result != (pim->state->c == NFA_START_INVISIBLE_NEG
|
|
|| pim->state->c == NFA_START_INVISIBLE_NEG_FIRST
|
|
|| pim->state->c
|
|
== NFA_START_INVISIBLE_BEFORE_NEG
|
|
|| pim->state->c
|
|
== NFA_START_INVISIBLE_BEFORE_NEG_FIRST)) {
|
|
// Copy submatch info from the recursive call
|
|
copy_sub_off(&t->subs.norm, &pim->subs.norm);
|
|
if (rex.nfa_has_zsubexpr) {
|
|
copy_sub_off(&t->subs.synt, &pim->subs.synt);
|
|
}
|
|
} else {
|
|
// look-behind match failed, don't add the state
|
|
continue;
|
|
}
|
|
|
|
// Postponed invisible match was handled, don't add it to
|
|
// following states.
|
|
pim = NULL;
|
|
}
|
|
|
|
// If "pim" points into l->t it will become invalid when
|
|
// adding the state causes the list to be reallocated. Make a
|
|
// local copy to avoid that.
|
|
if (pim == &t->pim) {
|
|
copy_pim(&pim_copy, pim);
|
|
pim = &pim_copy;
|
|
}
|
|
|
|
if (add_here) {
|
|
r = addstate_here(thislist, add_state, &t->subs, pim, &listidx);
|
|
} else {
|
|
r = addstate(nextlist, add_state, &t->subs, pim, add_off);
|
|
if (add_count > 0) {
|
|
nextlist->t[nextlist->n - 1].count = add_count;
|
|
}
|
|
}
|
|
if (r == NULL) {
|
|
nfa_match = NFA_TOO_EXPENSIVE;
|
|
goto theend;
|
|
}
|
|
}
|
|
} // for (thislist = thislist; thislist->state; thislist++)
|
|
|
|
// Look for the start of a match in the current position by adding the
|
|
// start state to the list of states.
|
|
// The first found match is the leftmost one, thus the order of states
|
|
// matters!
|
|
// Do not add the start state in recursive calls of nfa_regmatch(),
|
|
// because recursive calls should only start in the first position.
|
|
// Unless "nfa_endp" is not NULL, then we match the end position.
|
|
// Also don't start a match past the first line.
|
|
if (!nfa_match
|
|
&& ((toplevel
|
|
&& rex.lnum == 0
|
|
&& clen != 0
|
|
&& (rex.reg_maxcol == 0
|
|
|| (colnr_T)(rex.input - rex.line) < rex.reg_maxcol))
|
|
|| (nfa_endp != NULL
|
|
&& (REG_MULTI
|
|
? (rex.lnum < nfa_endp->se_u.pos.lnum
|
|
|| (rex.lnum == nfa_endp->se_u.pos.lnum
|
|
&& (int)(rex.input - rex.line)
|
|
< nfa_endp->se_u.pos.col))
|
|
: rex.input < nfa_endp->se_u.ptr)))) {
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd, "(---) STARTSTATE\n");
|
|
#endif
|
|
// Inline optimized code for addstate() if we know the state is
|
|
// the first MOPEN.
|
|
if (toplevel) {
|
|
int add = true;
|
|
|
|
if (prog->regstart != NUL && clen != 0) {
|
|
if (nextlist->n == 0) {
|
|
colnr_T col = (colnr_T)(rex.input - rex.line) + clen;
|
|
|
|
// Nextlist is empty, we can skip ahead to the
|
|
// character that must appear at the start.
|
|
if (skip_to_start(prog->regstart, &col) == FAIL) {
|
|
break;
|
|
}
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd, " Skipping ahead %d bytes to regstart\n",
|
|
col - ((colnr_T)(rex.input - rex.line) + clen));
|
|
#endif
|
|
rex.input = rex.line + col - clen;
|
|
} else {
|
|
// Checking if the required start character matches is
|
|
// cheaper than adding a state that won't match.
|
|
const int c = utf_ptr2char((char *)rex.input + clen);
|
|
if (c != prog->regstart
|
|
&& (!rex.reg_ic
|
|
|| utf_fold(c) != utf_fold(prog->regstart))) {
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd,
|
|
" Skipping start state, regstart does not match\n");
|
|
#endif
|
|
add = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (add) {
|
|
if (REG_MULTI) {
|
|
m->norm.list.multi[0].start_col =
|
|
(colnr_T)(rex.input - rex.line) + clen;
|
|
m->norm.orig_start_col =
|
|
m->norm.list.multi[0].start_col;
|
|
} else {
|
|
m->norm.list.line[0].start = rex.input + clen;
|
|
}
|
|
if (addstate(nextlist, start->out, m, NULL, clen) == NULL) {
|
|
nfa_match = NFA_TOO_EXPENSIVE;
|
|
goto theend;
|
|
}
|
|
}
|
|
} else {
|
|
if (addstate(nextlist, start, m, NULL, clen) == NULL) {
|
|
nfa_match = NFA_TOO_EXPENSIVE;
|
|
goto theend;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd, ">>> Thislist had %d states available: ", thislist->n);
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < thislist->n; i++) {
|
|
fprintf(log_fd, "%d ", abs(thislist->t[i].state->id));
|
|
}
|
|
}
|
|
fprintf(log_fd, "\n");
|
|
#endif
|
|
|
|
nextchar:
|
|
// Advance to the next character, or advance to the next line, or
|
|
// finish.
|
|
if (clen != 0) {
|
|
rex.input += clen;
|
|
} else if (go_to_nextline || (nfa_endp != NULL && REG_MULTI
|
|
&& rex.lnum < nfa_endp->se_u.pos.lnum)) {
|
|
reg_nextline();
|
|
} else {
|
|
break;
|
|
}
|
|
|
|
// Allow interrupting with CTRL-C.
|
|
reg_breakcheck();
|
|
if (got_int) {
|
|
break;
|
|
}
|
|
// Check for timeout once every twenty times to avoid overhead.
|
|
if (nfa_time_limit != NULL && ++nfa_time_count == 20) {
|
|
nfa_time_count = 0;
|
|
if (nfa_did_time_out()) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
if (log_fd != stderr) {
|
|
fclose(log_fd);
|
|
}
|
|
log_fd = NULL;
|
|
#endif
|
|
|
|
theend:
|
|
// Free memory
|
|
xfree(list[0].t);
|
|
xfree(list[1].t);
|
|
xfree(listids);
|
|
#undef ADD_STATE_IF_MATCH
|
|
#ifdef NFA_REGEXP_DEBUG_LOG
|
|
fclose(debug);
|
|
#endif
|
|
|
|
return nfa_match;
|
|
}
|
|
|
|
/// Try match of "prog" with at rex.line["col"].
|
|
///
|
|
/// @param tm timeout limit or NULL
|
|
/// @param timed_out flag set on timeout or NULL
|
|
///
|
|
/// @return <= 0 for failure, number of lines contained in the match otherwise.
|
|
static int nfa_regtry(nfa_regprog_T *prog, colnr_T col, proftime_T *tm, int *timed_out)
|
|
{
|
|
int i;
|
|
regsubs_T subs, m;
|
|
nfa_state_T *start = prog->start;
|
|
#ifdef REGEXP_DEBUG
|
|
FILE *f;
|
|
#endif
|
|
|
|
rex.input = rex.line + col;
|
|
nfa_time_limit = tm;
|
|
nfa_timed_out = timed_out;
|
|
nfa_time_count = 0;
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
f = fopen(NFA_REGEXP_RUN_LOG, "a");
|
|
if (f != NULL) {
|
|
fprintf(f,
|
|
"\n\n\t=======================================================\n");
|
|
# ifdef REGEXP_DEBUG
|
|
fprintf(f, "\tRegexp is \"%s\"\n", nfa_regengine.expr);
|
|
# endif
|
|
fprintf(f, "\tInput text is \"%s\" \n", rex.input);
|
|
fprintf(f, "\t=======================================================\n\n");
|
|
nfa_print_state(f, start);
|
|
fprintf(f, "\n\n");
|
|
fclose(f);
|
|
} else {
|
|
emsg("Could not open temporary log file for writing");
|
|
}
|
|
#endif
|
|
|
|
clear_sub(&subs.norm);
|
|
clear_sub(&m.norm);
|
|
clear_sub(&subs.synt);
|
|
clear_sub(&m.synt);
|
|
|
|
int result = nfa_regmatch(prog, start, &subs, &m);
|
|
if (!result) {
|
|
return 0;
|
|
} else if (result == NFA_TOO_EXPENSIVE) {
|
|
return result;
|
|
}
|
|
|
|
cleanup_subexpr();
|
|
if (REG_MULTI) {
|
|
for (i = 0; i < subs.norm.in_use; i++) {
|
|
rex.reg_startpos[i].lnum = subs.norm.list.multi[i].start_lnum;
|
|
rex.reg_startpos[i].col = subs.norm.list.multi[i].start_col;
|
|
|
|
rex.reg_endpos[i].lnum = subs.norm.list.multi[i].end_lnum;
|
|
rex.reg_endpos[i].col = subs.norm.list.multi[i].end_col;
|
|
}
|
|
if (rex.reg_mmatch != NULL) {
|
|
rex.reg_mmatch->rmm_matchcol = subs.norm.orig_start_col;
|
|
}
|
|
|
|
if (rex.reg_startpos[0].lnum < 0) {
|
|
rex.reg_startpos[0].lnum = 0;
|
|
rex.reg_startpos[0].col = col;
|
|
}
|
|
if (rex.reg_endpos[0].lnum < 0) {
|
|
// pattern has a \ze but it didn't match, use current end
|
|
rex.reg_endpos[0].lnum = rex.lnum;
|
|
rex.reg_endpos[0].col = (int)(rex.input - rex.line);
|
|
} else {
|
|
// Use line number of "\ze".
|
|
rex.lnum = rex.reg_endpos[0].lnum;
|
|
}
|
|
} else {
|
|
for (i = 0; i < subs.norm.in_use; i++) {
|
|
rex.reg_startp[i] = subs.norm.list.line[i].start;
|
|
rex.reg_endp[i] = subs.norm.list.line[i].end;
|
|
}
|
|
|
|
if (rex.reg_startp[0] == NULL) {
|
|
rex.reg_startp[0] = rex.line + col;
|
|
}
|
|
if (rex.reg_endp[0] == NULL) {
|
|
rex.reg_endp[0] = rex.input;
|
|
}
|
|
}
|
|
|
|
// Package any found \z(...\) matches for export. Default is none.
|
|
unref_extmatch(re_extmatch_out);
|
|
re_extmatch_out = NULL;
|
|
|
|
if (prog->reghasz == REX_SET) {
|
|
cleanup_zsubexpr();
|
|
re_extmatch_out = make_extmatch();
|
|
// Loop over \z1, \z2, etc. There is no \z0.
|
|
for (i = 1; i < subs.synt.in_use; i++) {
|
|
if (REG_MULTI) {
|
|
struct multipos *mpos = &subs.synt.list.multi[i];
|
|
|
|
// Only accept single line matches that are valid.
|
|
if (mpos->start_lnum >= 0
|
|
&& mpos->start_lnum == mpos->end_lnum
|
|
&& mpos->end_col >= mpos->start_col) {
|
|
re_extmatch_out->matches[i] =
|
|
(uint8_t *)xstrnsave(reg_getline(mpos->start_lnum) + mpos->start_col,
|
|
(size_t)(mpos->end_col - mpos->start_col));
|
|
}
|
|
} else {
|
|
struct linepos *lpos = &subs.synt.list.line[i];
|
|
|
|
if (lpos->start != NULL && lpos->end != NULL) {
|
|
re_extmatch_out->matches[i] =
|
|
(uint8_t *)xstrnsave((char *)lpos->start, (size_t)(lpos->end - lpos->start));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return 1 + rex.lnum;
|
|
}
|
|
|
|
/// Match a regexp against a string ("line" points to the string) or multiple
|
|
/// lines (if "line" is NULL, use reg_getline()).
|
|
///
|
|
/// @param line String in which to search or NULL
|
|
/// @param startcol Column to start looking for match
|
|
/// @param tm Timeout limit or NULL
|
|
/// @param timed_out Flag set on timeout or NULL
|
|
///
|
|
/// @return <= 0 if there is no match and number of lines contained in the
|
|
/// match otherwise.
|
|
static int nfa_regexec_both(uint8_t *line, colnr_T startcol, proftime_T *tm, int *timed_out)
|
|
{
|
|
nfa_regprog_T *prog;
|
|
int retval = 0;
|
|
colnr_T col = startcol;
|
|
|
|
if (REG_MULTI) {
|
|
prog = (nfa_regprog_T *)rex.reg_mmatch->regprog;
|
|
line = (uint8_t *)reg_getline(0); // relative to the cursor
|
|
rex.reg_startpos = rex.reg_mmatch->startpos;
|
|
rex.reg_endpos = rex.reg_mmatch->endpos;
|
|
} else {
|
|
prog = (nfa_regprog_T *)rex.reg_match->regprog;
|
|
rex.reg_startp = (uint8_t **)rex.reg_match->startp;
|
|
rex.reg_endp = (uint8_t **)rex.reg_match->endp;
|
|
}
|
|
|
|
// Be paranoid...
|
|
if (prog == NULL || line == NULL) {
|
|
iemsg(_(e_null));
|
|
goto theend;
|
|
}
|
|
|
|
// If pattern contains "\c" or "\C": overrule value of rex.reg_ic
|
|
if (prog->regflags & RF_ICASE) {
|
|
rex.reg_ic = true;
|
|
} else if (prog->regflags & RF_NOICASE) {
|
|
rex.reg_ic = false;
|
|
}
|
|
|
|
// If pattern contains "\Z" overrule value of rex.reg_icombine
|
|
if (prog->regflags & RF_ICOMBINE) {
|
|
rex.reg_icombine = true;
|
|
}
|
|
|
|
rex.line = line;
|
|
rex.lnum = 0; // relative to line
|
|
|
|
rex.nfa_has_zend = prog->has_zend;
|
|
rex.nfa_has_backref = prog->has_backref;
|
|
rex.nfa_nsubexpr = prog->nsubexp;
|
|
rex.nfa_listid = 1;
|
|
rex.nfa_alt_listid = 2;
|
|
#ifdef REGEXP_DEBUG
|
|
nfa_regengine.expr = prog->pattern;
|
|
#endif
|
|
|
|
if (prog->reganch && col > 0) {
|
|
return 0L;
|
|
}
|
|
|
|
rex.need_clear_subexpr = true;
|
|
// Clear the external match subpointers if necessary.
|
|
if (prog->reghasz == REX_SET) {
|
|
rex.nfa_has_zsubexpr = true;
|
|
rex.need_clear_zsubexpr = true;
|
|
} else {
|
|
rex.nfa_has_zsubexpr = false;
|
|
rex.need_clear_zsubexpr = false;
|
|
}
|
|
|
|
if (prog->regstart != NUL) {
|
|
// Skip ahead until a character we know the match must start with.
|
|
// When there is none there is no match.
|
|
if (skip_to_start(prog->regstart, &col) == FAIL) {
|
|
return 0L;
|
|
}
|
|
|
|
// If match_text is set it contains the full text that must match.
|
|
// Nothing else to try. Doesn't handle combining chars well.
|
|
if (prog->match_text != NULL && !rex.reg_icombine) {
|
|
retval = find_match_text(&col, prog->regstart, prog->match_text);
|
|
if (REG_MULTI) {
|
|
rex.reg_mmatch->rmm_matchcol = col;
|
|
} else {
|
|
rex.reg_match->rm_matchcol = col;
|
|
}
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
// If the start column is past the maximum column: no need to try.
|
|
if (rex.reg_maxcol > 0 && col >= rex.reg_maxcol) {
|
|
goto theend;
|
|
}
|
|
|
|
// Set the "nstate" used by nfa_regcomp() to zero to trigger an error when
|
|
// it's accidentally used during execution.
|
|
nstate = 0;
|
|
for (int i = 0; i < prog->nstate; i++) {
|
|
prog->state[i].id = i;
|
|
prog->state[i].lastlist[0] = 0;
|
|
prog->state[i].lastlist[1] = 0;
|
|
}
|
|
|
|
retval = nfa_regtry(prog, col, tm, timed_out);
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
nfa_regengine.expr = NULL;
|
|
#endif
|
|
|
|
theend:
|
|
if (retval > 0) {
|
|
// Make sure the end is never before the start. Can happen when \zs and
|
|
// \ze are used.
|
|
if (REG_MULTI) {
|
|
const lpos_T *const start = &rex.reg_mmatch->startpos[0];
|
|
const lpos_T *const end = &rex.reg_mmatch->endpos[0];
|
|
|
|
if (end->lnum < start->lnum
|
|
|| (end->lnum == start->lnum && end->col < start->col)) {
|
|
rex.reg_mmatch->endpos[0] = rex.reg_mmatch->startpos[0];
|
|
}
|
|
} else {
|
|
if (rex.reg_match->endp[0] < rex.reg_match->startp[0]) {
|
|
rex.reg_match->endp[0] = rex.reg_match->startp[0];
|
|
}
|
|
|
|
// startpos[0] may be set by "\zs", also return the column where
|
|
// the whole pattern matched.
|
|
rex.reg_match->rm_matchcol = col;
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
// Compile a regular expression into internal code for the NFA matcher.
|
|
// Returns the program in allocated space. Returns NULL for an error.
|
|
static regprog_T *nfa_regcomp(uint8_t *expr, int re_flags)
|
|
{
|
|
nfa_regprog_T *prog = NULL;
|
|
int *postfix;
|
|
|
|
if (expr == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
nfa_regengine.expr = expr;
|
|
#endif
|
|
nfa_re_flags = re_flags;
|
|
|
|
init_class_tab();
|
|
|
|
nfa_regcomp_start(expr, re_flags);
|
|
|
|
// Build postfix form of the regexp. Needed to build the NFA
|
|
// (and count its size).
|
|
postfix = re2post();
|
|
if (postfix == NULL) {
|
|
goto fail; // Cascaded (syntax?) error
|
|
}
|
|
|
|
// In order to build the NFA, we parse the input regexp twice:
|
|
// 1. first pass to count size (so we can allocate space)
|
|
// 2. second to emit code
|
|
#ifdef REGEXP_DEBUG
|
|
{
|
|
FILE *f = fopen(NFA_REGEXP_RUN_LOG, "a");
|
|
|
|
if (f != NULL) {
|
|
fprintf(f,
|
|
"\n*****************************\n\n\n\n\t"
|
|
"Compiling regexp \"%s\"... hold on !\n",
|
|
expr);
|
|
fclose(f);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// PASS 1
|
|
// Count number of NFA states in "nstate". Do not build the NFA.
|
|
post2nfa(postfix, post_ptr, true);
|
|
|
|
// allocate the regprog with space for the compiled regexp
|
|
size_t prog_size = offsetof(nfa_regprog_T, state) + sizeof(nfa_state_T) * (size_t)nstate;
|
|
prog = xmalloc(prog_size);
|
|
state_ptr = prog->state;
|
|
prog->re_in_use = false;
|
|
|
|
// PASS 2
|
|
// Build the NFA
|
|
prog->start = post2nfa(postfix, post_ptr, false);
|
|
if (prog->start == NULL) {
|
|
goto fail;
|
|
}
|
|
prog->regflags = regflags;
|
|
prog->engine = &nfa_regengine;
|
|
prog->nstate = nstate;
|
|
prog->has_zend = rex.nfa_has_zend;
|
|
prog->has_backref = rex.nfa_has_backref;
|
|
prog->nsubexp = regnpar;
|
|
|
|
nfa_postprocess(prog);
|
|
|
|
prog->reganch = nfa_get_reganch(prog->start, 0);
|
|
prog->regstart = nfa_get_regstart(prog->start, 0);
|
|
prog->match_text = nfa_get_match_text(prog->start);
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
nfa_postfix_dump(expr, OK);
|
|
nfa_dump(prog);
|
|
#endif
|
|
// Remember whether this pattern has any \z specials in it.
|
|
prog->reghasz = re_has_z;
|
|
prog->pattern = xstrdup((char *)expr);
|
|
#ifdef REGEXP_DEBUG
|
|
nfa_regengine.expr = NULL;
|
|
#endif
|
|
|
|
out:
|
|
xfree(post_start);
|
|
post_start = post_ptr = post_end = NULL;
|
|
state_ptr = NULL;
|
|
return (regprog_T *)prog;
|
|
|
|
fail:
|
|
XFREE_CLEAR(prog);
|
|
#ifdef REGEXP_DEBUG
|
|
nfa_postfix_dump(expr, FAIL);
|
|
nfa_regengine.expr = NULL;
|
|
#endif
|
|
goto out;
|
|
}
|
|
|
|
// Free a compiled regexp program, returned by nfa_regcomp().
|
|
static void nfa_regfree(regprog_T *prog)
|
|
{
|
|
if (prog == NULL) {
|
|
return;
|
|
}
|
|
|
|
xfree(((nfa_regprog_T *)prog)->match_text);
|
|
xfree(((nfa_regprog_T *)prog)->pattern);
|
|
xfree(prog);
|
|
}
|
|
|
|
/// Match a regexp against a string.
|
|
/// "rmp->regprog" is a compiled regexp as returned by nfa_regcomp().
|
|
/// Uses curbuf for line count and 'iskeyword'.
|
|
/// If "line_lbr" is true, consider a "\n" in "line" to be a line break.
|
|
///
|
|
/// @param line string to match against
|
|
/// @param col column to start looking for match
|
|
///
|
|
/// @return <= 0 for failure, number of lines contained in the match otherwise.
|
|
static int nfa_regexec_nl(regmatch_T *rmp, uint8_t *line, colnr_T col, bool line_lbr)
|
|
{
|
|
rex.reg_match = rmp;
|
|
rex.reg_mmatch = NULL;
|
|
rex.reg_maxline = 0;
|
|
rex.reg_line_lbr = line_lbr;
|
|
rex.reg_buf = curbuf;
|
|
rex.reg_win = NULL;
|
|
rex.reg_ic = rmp->rm_ic;
|
|
rex.reg_icombine = false;
|
|
rex.reg_nobreak = rmp->regprog->re_flags & RE_NOBREAK;
|
|
rex.reg_maxcol = 0;
|
|
return nfa_regexec_both(line, col, NULL, NULL);
|
|
}
|
|
|
|
/// Matches a regexp against multiple lines.
|
|
/// "rmp->regprog" is a compiled regexp as returned by vim_regcomp().
|
|
/// Uses curbuf for line count and 'iskeyword'.
|
|
///
|
|
/// @param win Window in which to search or NULL
|
|
/// @param buf Buffer in which to search
|
|
/// @param lnum Number of line to start looking for match
|
|
/// @param col Column to start looking for match
|
|
/// @param tm Timeout limit or NULL
|
|
/// @param timed_out Flag set on timeout or NULL
|
|
///
|
|
/// @return <= 0 if there is no match and number of lines contained in the match
|
|
/// otherwise.
|
|
///
|
|
/// @note The body is the same as bt_regexec() except for nfa_regexec_both()
|
|
///
|
|
/// @warning
|
|
/// Match may actually be in another line. e.g.:
|
|
/// when r.e. is \nc, cursor is at 'a' and the text buffer looks like
|
|
///
|
|
/// @par
|
|
///
|
|
/// +-------------------------+
|
|
/// |a |
|
|
/// |b |
|
|
/// |c |
|
|
/// | |
|
|
/// +-------------------------+
|
|
///
|
|
/// @par
|
|
/// then nfa_regexec_multi() returns 3. while the original vim_regexec_multi()
|
|
/// returns 0 and a second call at line 2 will return 2.
|
|
///
|
|
/// @par
|
|
/// FIXME if this behavior is not compatible.
|
|
static int nfa_regexec_multi(regmmatch_T *rmp, win_T *win, buf_T *buf, linenr_T lnum, colnr_T col,
|
|
proftime_T *tm, int *timed_out)
|
|
{
|
|
init_regexec_multi(rmp, win, buf, lnum);
|
|
return nfa_regexec_both(NULL, col, tm, timed_out);
|
|
}
|
|
// }}}1
|
|
|
|
static regengine_T bt_regengine = {
|
|
bt_regcomp,
|
|
bt_regfree,
|
|
bt_regexec_nl,
|
|
bt_regexec_multi,
|
|
#ifdef REGEXP_DEBUG
|
|
"",
|
|
#endif
|
|
};
|
|
|
|
static regengine_T nfa_regengine = {
|
|
nfa_regcomp,
|
|
nfa_regfree,
|
|
nfa_regexec_nl,
|
|
nfa_regexec_multi,
|
|
#ifdef REGEXP_DEBUG
|
|
"",
|
|
#endif
|
|
};
|
|
|
|
// Which regexp engine to use? Needed for vim_regcomp().
|
|
// Must match with 'regexpengine'.
|
|
static int regexp_engine = 0;
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
static uint8_t regname[][30] = {
|
|
"AUTOMATIC Regexp Engine",
|
|
"BACKTRACKING Regexp Engine",
|
|
"NFA Regexp Engine"
|
|
};
|
|
#endif
|
|
|
|
// Compile a regular expression into internal code.
|
|
// Returns the program in allocated memory.
|
|
// Use vim_regfree() to free the memory.
|
|
// Returns NULL for an error.
|
|
regprog_T *vim_regcomp(const char *expr_arg, int re_flags)
|
|
{
|
|
regprog_T *prog = NULL;
|
|
const char *expr = expr_arg;
|
|
|
|
regexp_engine = (int)p_re;
|
|
|
|
// Check for prefix "\%#=", that sets the regexp engine
|
|
if (strncmp(expr, "\\%#=", 4) == 0) {
|
|
int newengine = expr[4] - '0';
|
|
|
|
if (newengine == AUTOMATIC_ENGINE
|
|
|| newengine == BACKTRACKING_ENGINE
|
|
|| newengine == NFA_ENGINE) {
|
|
regexp_engine = expr[4] - '0';
|
|
expr += 5;
|
|
#ifdef REGEXP_DEBUG
|
|
smsg(0, "New regexp mode selected (%d): %s",
|
|
regexp_engine,
|
|
regname[newengine]);
|
|
#endif
|
|
} else {
|
|
emsg(_("E864: \\%#= can only be followed by 0, 1, or 2. The automatic engine will be used "));
|
|
regexp_engine = AUTOMATIC_ENGINE;
|
|
}
|
|
}
|
|
#ifdef REGEXP_DEBUG
|
|
bt_regengine.expr = expr;
|
|
nfa_regengine.expr = expr;
|
|
#endif
|
|
// reg_iswordc() uses rex.reg_buf
|
|
rex.reg_buf = curbuf;
|
|
|
|
//
|
|
// First try the NFA engine, unless backtracking was requested.
|
|
//
|
|
const int called_emsg_before = called_emsg;
|
|
if (regexp_engine != BACKTRACKING_ENGINE) {
|
|
prog = nfa_regengine.regcomp((uint8_t *)expr,
|
|
re_flags + (regexp_engine == AUTOMATIC_ENGINE ? RE_AUTO : 0));
|
|
} else {
|
|
prog = bt_regengine.regcomp((uint8_t *)expr, re_flags);
|
|
}
|
|
|
|
// Check for error compiling regexp with initial engine.
|
|
if (prog == NULL) {
|
|
#ifdef BT_REGEXP_DEBUG_LOG
|
|
// Debugging log for BT engine.
|
|
if (regexp_engine != BACKTRACKING_ENGINE) {
|
|
FILE *f = fopen(BT_REGEXP_DEBUG_LOG_NAME, "a");
|
|
if (f) {
|
|
fprintf(f, "Syntax error in \"%s\"\n", expr);
|
|
fclose(f);
|
|
} else {
|
|
semsg("(NFA) Could not open \"%s\" to write !!!",
|
|
BT_REGEXP_DEBUG_LOG_NAME);
|
|
}
|
|
}
|
|
#endif
|
|
// If the NFA engine failed, try the backtracking engine. The NFA engine
|
|
// also fails for patterns that it can't handle well but are still valid
|
|
// patterns, thus a retry should work.
|
|
// But don't try if an error message was given.
|
|
if (regexp_engine == AUTOMATIC_ENGINE && called_emsg == called_emsg_before) {
|
|
regexp_engine = BACKTRACKING_ENGINE;
|
|
report_re_switch(expr);
|
|
prog = bt_regengine.regcomp((uint8_t *)expr, re_flags);
|
|
}
|
|
}
|
|
|
|
if (prog != NULL) {
|
|
// Store the info needed to call regcomp() again when the engine turns out
|
|
// to be very slow when executing it.
|
|
prog->re_engine = (unsigned)regexp_engine;
|
|
prog->re_flags = (unsigned)re_flags;
|
|
}
|
|
|
|
return prog;
|
|
}
|
|
|
|
// Free a compiled regexp program, returned by vim_regcomp().
|
|
void vim_regfree(regprog_T *prog)
|
|
{
|
|
if (prog != NULL) {
|
|
prog->engine->regfree(prog);
|
|
}
|
|
}
|
|
|
|
#if defined(EXITFREE)
|
|
void free_regexp_stuff(void)
|
|
{
|
|
ga_clear(®stack);
|
|
ga_clear(&backpos);
|
|
xfree(reg_tofree);
|
|
xfree(reg_prev_sub);
|
|
}
|
|
|
|
#endif
|
|
|
|
static void report_re_switch(const char *pat)
|
|
{
|
|
if (p_verbose > 0) {
|
|
verbose_enter();
|
|
msg_puts(_("Switching to backtracking RE engine for pattern: "));
|
|
msg_puts(pat);
|
|
verbose_leave();
|
|
}
|
|
}
|
|
|
|
/// Match a regexp against a string.
|
|
/// "rmp->regprog" must be a compiled regexp as returned by vim_regcomp().
|
|
/// Note: "rmp->regprog" may be freed and changed.
|
|
/// Uses curbuf for line count and 'iskeyword'.
|
|
/// When "nl" is true consider a "\n" in "line" to be a line break.
|
|
///
|
|
/// @param rmp
|
|
/// @param line the string to match against
|
|
/// @param col the column to start looking for match
|
|
/// @param nl
|
|
///
|
|
/// @return true if there is a match, false if not.
|
|
static bool vim_regexec_string(regmatch_T *rmp, const char *line, colnr_T col, bool nl)
|
|
{
|
|
regexec_T rex_save;
|
|
bool rex_in_use_save = rex_in_use;
|
|
|
|
// Cannot use the same prog recursively, it contains state.
|
|
if (rmp->regprog->re_in_use) {
|
|
emsg(_(e_recursive));
|
|
return false;
|
|
}
|
|
rmp->regprog->re_in_use = true;
|
|
|
|
if (rex_in_use) {
|
|
// Being called recursively, save the state.
|
|
rex_save = rex;
|
|
}
|
|
rex_in_use = true;
|
|
|
|
rex.reg_startp = NULL;
|
|
rex.reg_endp = NULL;
|
|
rex.reg_startpos = NULL;
|
|
rex.reg_endpos = NULL;
|
|
|
|
int result = rmp->regprog->engine->regexec_nl(rmp, (uint8_t *)line, col, nl);
|
|
rmp->regprog->re_in_use = false;
|
|
|
|
// NFA engine aborted because it's very slow, use backtracking engine instead.
|
|
if (rmp->regprog->re_engine == AUTOMATIC_ENGINE
|
|
&& result == NFA_TOO_EXPENSIVE) {
|
|
int save_p_re = (int)p_re;
|
|
int re_flags = (int)rmp->regprog->re_flags;
|
|
char *pat = xstrdup(((nfa_regprog_T *)rmp->regprog)->pattern);
|
|
|
|
p_re = BACKTRACKING_ENGINE;
|
|
vim_regfree(rmp->regprog);
|
|
report_re_switch(pat);
|
|
rmp->regprog = vim_regcomp(pat, re_flags);
|
|
if (rmp->regprog != NULL) {
|
|
rmp->regprog->re_in_use = true;
|
|
result = rmp->regprog->engine->regexec_nl(rmp, (uint8_t *)line, col, nl);
|
|
rmp->regprog->re_in_use = false;
|
|
}
|
|
|
|
xfree(pat);
|
|
p_re = save_p_re;
|
|
}
|
|
|
|
rex_in_use = rex_in_use_save;
|
|
if (rex_in_use) {
|
|
rex = rex_save;
|
|
}
|
|
|
|
return result > 0;
|
|
}
|
|
|
|
// Note: "*prog" may be freed and changed.
|
|
// Return true if there is a match, false if not.
|
|
bool vim_regexec_prog(regprog_T **prog, bool ignore_case, const char *line, colnr_T col)
|
|
{
|
|
regmatch_T regmatch = { .regprog = *prog, .rm_ic = ignore_case };
|
|
bool r = vim_regexec_string(®match, line, col, false);
|
|
*prog = regmatch.regprog;
|
|
return r;
|
|
}
|
|
|
|
// Note: "rmp->regprog" may be freed and changed.
|
|
// Return true if there is a match, false if not.
|
|
bool vim_regexec(regmatch_T *rmp, const char *line, colnr_T col)
|
|
{
|
|
return vim_regexec_string(rmp, line, col, false);
|
|
}
|
|
|
|
// Like vim_regexec(), but consider a "\n" in "line" to be a line break.
|
|
// Note: "rmp->regprog" may be freed and changed.
|
|
// Return true if there is a match, false if not.
|
|
bool vim_regexec_nl(regmatch_T *rmp, const char *line, colnr_T col)
|
|
{
|
|
return vim_regexec_string(rmp, line, col, true);
|
|
}
|
|
|
|
/// Match a regexp against multiple lines.
|
|
/// "rmp->regprog" must be a compiled regexp as returned by vim_regcomp().
|
|
/// Note: "rmp->regprog" may be freed and changed, even set to NULL.
|
|
/// Uses curbuf for line count and 'iskeyword'.
|
|
///
|
|
/// @param win window in which to search or NULL
|
|
/// @param buf buffer in which to search
|
|
/// @param lnum nr of line to start looking for match
|
|
/// @param col column to start looking for match
|
|
/// @param tm timeout limit or NULL
|
|
/// @param timed_out flag is set when timeout limit reached
|
|
///
|
|
/// @return zero if there is no match. Return number of lines contained in the
|
|
/// match otherwise.
|
|
int vim_regexec_multi(regmmatch_T *rmp, win_T *win, buf_T *buf, linenr_T lnum, colnr_T col,
|
|
proftime_T *tm, int *timed_out)
|
|
FUNC_ATTR_NONNULL_ARG(1)
|
|
{
|
|
regexec_T rex_save;
|
|
bool rex_in_use_save = rex_in_use;
|
|
|
|
// Cannot use the same prog recursively, it contains state.
|
|
if (rmp->regprog->re_in_use) {
|
|
emsg(_(e_recursive));
|
|
return false;
|
|
}
|
|
rmp->regprog->re_in_use = true;
|
|
|
|
if (rex_in_use) {
|
|
// Being called recursively, save the state.
|
|
rex_save = rex;
|
|
}
|
|
rex_in_use = true;
|
|
|
|
int result = rmp->regprog->engine->regexec_multi(rmp, win, buf, lnum, col, tm, timed_out);
|
|
rmp->regprog->re_in_use = false;
|
|
|
|
// NFA engine aborted because it's very slow, use backtracking engine instead.
|
|
if (rmp->regprog->re_engine == AUTOMATIC_ENGINE
|
|
&& result == NFA_TOO_EXPENSIVE) {
|
|
int save_p_re = (int)p_re;
|
|
int re_flags = (int)rmp->regprog->re_flags;
|
|
char *pat = xstrdup(((nfa_regprog_T *)rmp->regprog)->pattern);
|
|
|
|
p_re = BACKTRACKING_ENGINE;
|
|
regprog_T *prev_prog = rmp->regprog;
|
|
|
|
report_re_switch(pat);
|
|
// checking for \z misuse was already done when compiling for NFA,
|
|
// allow all here
|
|
reg_do_extmatch = REX_ALL;
|
|
rmp->regprog = vim_regcomp(pat, re_flags);
|
|
reg_do_extmatch = 0;
|
|
|
|
if (rmp->regprog == NULL) {
|
|
// Somehow compiling the pattern failed now, put back the
|
|
// previous one to avoid "regprog" becoming NULL.
|
|
rmp->regprog = prev_prog;
|
|
} else {
|
|
vim_regfree(prev_prog);
|
|
|
|
rmp->regprog->re_in_use = true;
|
|
result = rmp->regprog->engine->regexec_multi(rmp, win, buf, lnum, col, tm, timed_out);
|
|
rmp->regprog->re_in_use = false;
|
|
}
|
|
|
|
xfree(pat);
|
|
p_re = save_p_re;
|
|
}
|
|
|
|
rex_in_use = rex_in_use_save;
|
|
if (rex_in_use) {
|
|
rex = rex_save;
|
|
}
|
|
|
|
return result <= 0 ? 0 : result;
|
|
}
|