Files
neovim/src/nvim/profile.c
dundargoc 66360675cf build: allow IWYU to fix includes for all .c files
Allow Include What You Use to remove unnecessary includes and only
include what is necessary. This helps with reducing compilation times
and makes it easier to visualise which dependencies are actually
required.

Work on https://github.com/neovim/neovim/issues/549, but doesn't close
it since this only works fully for .c files and not headers.
2022-11-15 10:30:03 +01:00

968 lines
27 KiB
C

// This is an open source non-commercial project. Dear PVS-Studio, please check
// it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
#include <assert.h>
#include <math.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "nvim/ascii.h"
#include "nvim/charset.h"
#include "nvim/debugger.h"
#include "nvim/eval.h"
#include "nvim/eval/typval_defs.h"
#include "nvim/eval/userfunc.h"
#include "nvim/ex_cmds_defs.h"
#include "nvim/fileio.h"
#include "nvim/garray.h"
#include "nvim/gettext.h"
#include "nvim/globals.h"
#include "nvim/hashtab.h"
#include "nvim/keycodes.h"
#include "nvim/memory.h"
#include "nvim/message.h"
#include "nvim/option_defs.h"
#include "nvim/os/os.h"
#include "nvim/os/time.h"
#include "nvim/pos.h"
#include "nvim/profile.h"
#include "nvim/runtime.h"
#include "nvim/types.h"
#include "nvim/vim.h"
#ifdef INCLUDE_GENERATED_DECLARATIONS
# include "profile.c.generated.h"
#endif
/// Struct used in sn_prl_ga for every line of a script.
typedef struct sn_prl_S {
int snp_count; ///< nr of times line was executed
proftime_T sn_prl_total; ///< time spent in a line + children
proftime_T sn_prl_self; ///< time spent in a line itself
} sn_prl_T;
#define PRL_ITEM(si, idx) (((sn_prl_T *)(si)->sn_prl_ga.ga_data)[(idx)])
static proftime_T prof_wait_time;
/// Gets the current time.
///
/// @return the current time
proftime_T profile_start(void) FUNC_ATTR_WARN_UNUSED_RESULT
{
return os_hrtime();
}
/// Computes the time elapsed.
///
/// @return Elapsed time from `tm` until now.
proftime_T profile_end(proftime_T tm) FUNC_ATTR_WARN_UNUSED_RESULT
{
return profile_sub(os_hrtime(), tm);
}
/// Gets a string representing time `tm`.
///
/// @warning Do not modify or free this string, not multithread-safe.
///
/// @param tm Time
/// @return Static string representing `tm` in the form "seconds.microseconds".
const char *profile_msg(proftime_T tm) FUNC_ATTR_WARN_UNUSED_RESULT
{
static char buf[50];
snprintf(buf, sizeof(buf), "%10.6lf",
(double)profile_signed(tm) / 1000000000.0);
return buf;
}
/// Gets the time `msec` into the future.
///
/// @param msec milliseconds, the maximum number of milliseconds is
/// (2^63 / 10^6) - 1 = 9.223372e+12.
/// @return if msec > 0, returns the time msec past now. Otherwise returns
/// the zero time.
proftime_T profile_setlimit(int64_t msec) FUNC_ATTR_WARN_UNUSED_RESULT
{
if (msec <= 0) {
// no limit
return profile_zero();
}
assert(msec <= (INT64_MAX / 1000000LL) - 1);
proftime_T nsec = (proftime_T)msec * 1000000ULL;
return os_hrtime() + nsec;
}
/// Checks if current time has passed `tm`.
///
/// @return true if the current time is past `tm`, false if not or if the
/// timer was not set.
bool profile_passed_limit(proftime_T tm) FUNC_ATTR_WARN_UNUSED_RESULT
{
if (tm == 0) {
// timer was not set
return false;
}
return profile_cmp(os_hrtime(), tm) < 0;
}
/// Gets the zero time.
///
/// @return the zero time
proftime_T profile_zero(void) FUNC_ATTR_CONST
{
return 0;
}
/// Divides time `tm` by `count`.
///
/// @return 0 if count <= 0, otherwise tm / count
proftime_T profile_divide(proftime_T tm, int count) FUNC_ATTR_CONST
{
if (count <= 0) {
return profile_zero();
}
return (proftime_T)round((double)tm / (double)count);
}
/// Adds time `tm2` to `tm1`.
///
/// @return `tm1` + `tm2`
proftime_T profile_add(proftime_T tm1, proftime_T tm2) FUNC_ATTR_CONST
{
return tm1 + tm2;
}
/// Subtracts time `tm2` from `tm1`.
///
/// Unsigned overflow (wraparound) occurs if `tm2` is greater than `tm1`.
/// Use `profile_signed()` to get the signed integer value.
///
/// @see profile_signed
///
/// @return `tm1` - `tm2`
proftime_T profile_sub(proftime_T tm1, proftime_T tm2) FUNC_ATTR_CONST
{
return tm1 - tm2;
}
/// Adds the `self` time from the total time and the `children` time.
///
/// @return if `total` <= `children`, then self, otherwise `self` + `total` -
/// `children`
proftime_T profile_self(proftime_T self, proftime_T total, proftime_T children)
FUNC_ATTR_CONST
{
// check that the result won't be negative, which can happen with
// recursive calls.
if (total <= children) {
return self;
}
// add the total time to self and subtract the children's time from self
return profile_sub(profile_add(self, total), children);
}
/// Gets the current waittime.
///
/// @return the current waittime
proftime_T profile_get_wait(void) FUNC_ATTR_PURE
{
return prof_wait_time;
}
/// Sets the current waittime.
void profile_set_wait(proftime_T wait)
{
prof_wait_time = wait;
}
/// Subtracts the passed waittime since `tm`.
///
/// @return `tma` - (waittime - `tm`)
proftime_T profile_sub_wait(proftime_T tm, proftime_T tma) FUNC_ATTR_PURE
{
proftime_T tm3 = profile_sub(profile_get_wait(), tm);
return profile_sub(tma, tm3);
}
/// Checks if time `tm1` is equal to `tm2`.
///
/// @return true if `tm1` == `tm2`
bool profile_equal(proftime_T tm1, proftime_T tm2) FUNC_ATTR_CONST
{
return tm1 == tm2;
}
/// Converts time duration `tm` (`profile_sub` result) to a signed integer.
///
/// @return signed representation of the given time value
int64_t profile_signed(proftime_T tm)
FUNC_ATTR_CONST
{
// (tm > INT64_MAX) is >=150 years, so we can assume it was produced by
// arithmetic of two proftime_T values. For human-readable representation
// (and Vim-compat) we want the difference after unsigned wraparound. #10452
return (tm <= INT64_MAX) ? (int64_t)tm : -(int64_t)(UINT64_MAX - tm);
}
/// Compares profiling times.
///
/// Times `tm1` and `tm2` must be less than 150 years apart.
///
/// @return <0: `tm2` < `tm1`
/// 0: `tm2` == `tm1`
/// >0: `tm2` > `tm1`
int profile_cmp(proftime_T tm1, proftime_T tm2) FUNC_ATTR_CONST
{
if (tm1 == tm2) {
return 0;
}
return profile_signed(tm2 - tm1) < 0 ? -1 : 1;
}
static char *profile_fname = NULL;
/// Reset all profiling information.
void profile_reset(void)
{
// Reset sourced files.
for (int id = 1; id <= script_items.ga_len; id++) {
scriptitem_T *si = &SCRIPT_ITEM(id);
if (si->sn_prof_on) {
si->sn_prof_on = false;
si->sn_pr_force = false;
si->sn_pr_child = profile_zero();
si->sn_pr_nest = 0;
si->sn_pr_count = 0;
si->sn_pr_total = profile_zero();
si->sn_pr_self = profile_zero();
si->sn_pr_start = profile_zero();
si->sn_pr_children = profile_zero();
ga_clear(&si->sn_prl_ga);
si->sn_prl_start = profile_zero();
si->sn_prl_children = profile_zero();
si->sn_prl_wait = profile_zero();
si->sn_prl_idx = -1;
si->sn_prl_execed = 0;
}
}
// Reset functions.
hashtab_T *const functbl = func_tbl_get();
size_t todo = functbl->ht_used;
hashitem_T *hi = functbl->ht_array;
for (; todo > (size_t)0; hi++) {
if (!HASHITEM_EMPTY(hi)) {
todo--;
ufunc_T *uf = HI2UF(hi);
if (uf->uf_prof_initialized) {
uf->uf_profiling = 0;
uf->uf_tm_count = 0;
uf->uf_tm_total = profile_zero();
uf->uf_tm_self = profile_zero();
uf->uf_tm_children = profile_zero();
for (int i = 0; i < uf->uf_lines.ga_len; i++) {
uf->uf_tml_count[i] = 0;
uf->uf_tml_total[i] = uf->uf_tml_self[i] = 0;
}
uf->uf_tml_start = profile_zero();
uf->uf_tml_children = profile_zero();
uf->uf_tml_wait = profile_zero();
uf->uf_tml_idx = -1;
uf->uf_tml_execed = 0;
}
}
}
XFREE_CLEAR(profile_fname);
}
/// ":profile cmd args"
void ex_profile(exarg_T *eap)
{
static proftime_T pause_time;
char *e;
int len;
e = skiptowhite(eap->arg);
len = (int)(e - eap->arg);
e = skipwhite(e);
if (len == 5 && STRNCMP(eap->arg, "start", 5) == 0 && *e != NUL) {
xfree(profile_fname);
profile_fname = (char *)expand_env_save_opt((char_u *)e, true);
do_profiling = PROF_YES;
profile_set_wait(profile_zero());
set_vim_var_nr(VV_PROFILING, 1L);
} else if (do_profiling == PROF_NONE) {
emsg(_("E750: First use \":profile start {fname}\""));
} else if (strcmp(eap->arg, "stop") == 0) {
profile_dump();
do_profiling = PROF_NONE;
set_vim_var_nr(VV_PROFILING, 0L);
profile_reset();
} else if (strcmp(eap->arg, "pause") == 0) {
if (do_profiling == PROF_YES) {
pause_time = profile_start();
}
do_profiling = PROF_PAUSED;
} else if (strcmp(eap->arg, "continue") == 0) {
if (do_profiling == PROF_PAUSED) {
pause_time = profile_end(pause_time);
profile_set_wait(profile_add(profile_get_wait(), pause_time));
}
do_profiling = PROF_YES;
} else if (strcmp(eap->arg, "dump") == 0) {
profile_dump();
} else {
// The rest is similar to ":breakadd".
ex_breakadd(eap);
}
}
/// Command line expansion for :profile.
static enum {
PEXP_SUBCMD, ///< expand :profile sub-commands
PEXP_FUNC, ///< expand :profile func {funcname}
} pexpand_what;
static char *pexpand_cmds[] = {
"continue",
"dump",
"file",
"func",
"pause",
"start",
"stop",
NULL
};
/// Function given to ExpandGeneric() to obtain the profile command
/// specific expansion.
char *get_profile_name(expand_T *xp, int idx)
FUNC_ATTR_PURE
{
switch (pexpand_what) {
case PEXP_SUBCMD:
return pexpand_cmds[idx];
// case PEXP_FUNC: TODO
default:
return NULL;
}
}
/// Handle command line completion for :profile command.
void set_context_in_profile_cmd(expand_T *xp, const char *arg)
{
// Default: expand subcommands.
xp->xp_context = EXPAND_PROFILE;
pexpand_what = PEXP_SUBCMD;
xp->xp_pattern = (char *)arg;
char_u *const end_subcmd = (char_u *)skiptowhite(arg);
if (*end_subcmd == NUL) {
return;
}
if ((const char *)end_subcmd - arg == 5 && strncmp(arg, "start", 5) == 0) {
xp->xp_context = EXPAND_FILES;
xp->xp_pattern = skipwhite((char *)end_subcmd);
return;
}
// TODO(tarruda): expand function names after "func"
xp->xp_context = EXPAND_NOTHING;
}
static proftime_T inchar_time;
/// Called when starting to wait for the user to type a character.
void prof_inchar_enter(void)
{
inchar_time = profile_start();
}
/// Called when finished waiting for the user to type a character.
void prof_inchar_exit(void)
{
inchar_time = profile_end(inchar_time);
profile_set_wait(profile_add(profile_get_wait(), inchar_time));
}
/// @return true when a function defined in the current script should be
/// profiled.
bool prof_def_func(void)
FUNC_ATTR_PURE
{
if (current_sctx.sc_sid > 0) {
return SCRIPT_ITEM(current_sctx.sc_sid).sn_pr_force;
}
return false;
}
/// Print the count and times for one function or function line.
///
/// @param prefer_self when equal print only self time
static void prof_func_line(FILE *fd, int count, const proftime_T *total, const proftime_T *self,
bool prefer_self)
{
if (count > 0) {
fprintf(fd, "%5d ", count);
if (prefer_self && profile_equal(*total, *self)) {
fprintf(fd, " ");
} else {
fprintf(fd, "%s ", profile_msg(*total));
}
if (!prefer_self && profile_equal(*total, *self)) {
fprintf(fd, " ");
} else {
fprintf(fd, "%s ", profile_msg(*self));
}
} else {
fprintf(fd, " ");
}
}
/// @param prefer_self when equal print only self time
static void prof_sort_list(FILE *fd, ufunc_T **sorttab, int st_len, char *title, bool prefer_self)
{
int i;
ufunc_T *fp;
fprintf(fd, "FUNCTIONS SORTED ON %s TIME\n", title);
fprintf(fd, "count total (s) self (s) function\n");
for (i = 0; i < 20 && i < st_len; i++) {
fp = sorttab[i];
prof_func_line(fd, fp->uf_tm_count, &fp->uf_tm_total, &fp->uf_tm_self,
prefer_self);
if (fp->uf_name[0] == K_SPECIAL) {
fprintf(fd, " <SNR>%s()\n", fp->uf_name + 3);
} else {
fprintf(fd, " %s()\n", fp->uf_name);
}
}
fprintf(fd, "\n");
}
/// Compare function for total time sorting.
static int prof_total_cmp(const void *s1, const void *s2)
{
ufunc_T *p1 = *(ufunc_T **)s1;
ufunc_T *p2 = *(ufunc_T **)s2;
return profile_cmp(p1->uf_tm_total, p2->uf_tm_total);
}
/// Compare function for self time sorting.
static int prof_self_cmp(const void *s1, const void *s2)
{
ufunc_T *p1 = *(ufunc_T **)s1;
ufunc_T *p2 = *(ufunc_T **)s2;
return profile_cmp(p1->uf_tm_self, p2->uf_tm_self);
}
/// Start profiling function "fp".
void func_do_profile(ufunc_T *fp)
{
int len = fp->uf_lines.ga_len;
if (!fp->uf_prof_initialized) {
if (len == 0) {
len = 1; // avoid getting error for allocating zero bytes
}
fp->uf_tm_count = 0;
fp->uf_tm_self = profile_zero();
fp->uf_tm_total = profile_zero();
if (fp->uf_tml_count == NULL) {
fp->uf_tml_count = xcalloc((size_t)len, sizeof(int));
}
if (fp->uf_tml_total == NULL) {
fp->uf_tml_total = xcalloc((size_t)len, sizeof(proftime_T));
}
if (fp->uf_tml_self == NULL) {
fp->uf_tml_self = xcalloc((size_t)len, sizeof(proftime_T));
}
fp->uf_tml_idx = -1;
fp->uf_prof_initialized = true;
}
fp->uf_profiling = true;
}
/// Prepare profiling for entering a child or something else that is not
/// counted for the script/function itself.
/// Should always be called in pair with prof_child_exit().
///
/// @param tm place to store waittime
void prof_child_enter(proftime_T *tm)
{
funccall_T *fc = get_current_funccal();
if (fc != NULL && fc->func->uf_profiling) {
fc->prof_child = profile_start();
}
script_prof_save(tm);
}
/// Take care of time spent in a child.
/// Should always be called after prof_child_enter().
///
/// @param tm where waittime was stored
void prof_child_exit(proftime_T *tm)
{
funccall_T *fc = get_current_funccal();
if (fc != NULL && fc->func->uf_profiling) {
fc->prof_child = profile_end(fc->prof_child);
// don't count waiting time
fc->prof_child = profile_sub_wait(*tm, fc->prof_child);
fc->func->uf_tm_children =
profile_add(fc->func->uf_tm_children, fc->prof_child);
fc->func->uf_tml_children =
profile_add(fc->func->uf_tml_children, fc->prof_child);
}
script_prof_restore(tm);
}
/// Called when starting to read a function line.
/// "sourcing_lnum" must be correct!
/// When skipping lines it may not actually be executed, but we won't find out
/// until later and we need to store the time now.
void func_line_start(void *cookie)
{
funccall_T *fcp = (funccall_T *)cookie;
ufunc_T *fp = fcp->func;
if (fp->uf_profiling && SOURCING_LNUM >= 1 && SOURCING_LNUM <= fp->uf_lines.ga_len) {
fp->uf_tml_idx = SOURCING_LNUM - 1;
// Skip continuation lines.
while (fp->uf_tml_idx > 0 && FUNCLINE(fp, fp->uf_tml_idx) == NULL) {
fp->uf_tml_idx--;
}
fp->uf_tml_execed = false;
fp->uf_tml_start = profile_start();
fp->uf_tml_children = profile_zero();
fp->uf_tml_wait = profile_get_wait();
}
}
/// Called when actually executing a function line.
void func_line_exec(void *cookie)
{
funccall_T *fcp = (funccall_T *)cookie;
ufunc_T *fp = fcp->func;
if (fp->uf_profiling && fp->uf_tml_idx >= 0) {
fp->uf_tml_execed = true;
}
}
/// Called when done with a function line.
void func_line_end(void *cookie)
{
funccall_T *fcp = (funccall_T *)cookie;
ufunc_T *fp = fcp->func;
if (fp->uf_profiling && fp->uf_tml_idx >= 0) {
if (fp->uf_tml_execed) {
fp->uf_tml_count[fp->uf_tml_idx]++;
fp->uf_tml_start = profile_end(fp->uf_tml_start);
fp->uf_tml_start = profile_sub_wait(fp->uf_tml_wait, fp->uf_tml_start);
fp->uf_tml_total[fp->uf_tml_idx] =
profile_add(fp->uf_tml_total[fp->uf_tml_idx], fp->uf_tml_start);
fp->uf_tml_self[fp->uf_tml_idx] =
profile_self(fp->uf_tml_self[fp->uf_tml_idx], fp->uf_tml_start,
fp->uf_tml_children);
}
fp->uf_tml_idx = -1;
}
}
/// Dump the profiling results for all functions in file "fd".
static void func_dump_profile(FILE *fd)
{
hashtab_T *const functbl = func_tbl_get();
hashitem_T *hi;
int todo;
ufunc_T *fp;
ufunc_T **sorttab;
int st_len = 0;
todo = (int)functbl->ht_used;
if (todo == 0) {
return; // nothing to dump
}
sorttab = xmalloc(sizeof(ufunc_T *) * (size_t)todo);
for (hi = functbl->ht_array; todo > 0; hi++) {
if (!HASHITEM_EMPTY(hi)) {
todo--;
fp = HI2UF(hi);
if (fp->uf_prof_initialized) {
sorttab[st_len++] = fp;
if (fp->uf_name[0] == K_SPECIAL) {
fprintf(fd, "FUNCTION <SNR>%s()\n", fp->uf_name + 3);
} else {
fprintf(fd, "FUNCTION %s()\n", fp->uf_name);
}
if (fp->uf_script_ctx.sc_sid != 0) {
bool should_free;
const LastSet last_set = (LastSet){
.script_ctx = fp->uf_script_ctx,
.channel_id = 0,
};
char *p = get_scriptname(last_set, &should_free);
fprintf(fd, " Defined: %s:%" PRIdLINENR "\n",
p, fp->uf_script_ctx.sc_lnum);
if (should_free) {
xfree(p);
}
}
if (fp->uf_tm_count == 1) {
fprintf(fd, "Called 1 time\n");
} else {
fprintf(fd, "Called %d times\n", fp->uf_tm_count);
}
fprintf(fd, "Total time: %s\n", profile_msg(fp->uf_tm_total));
fprintf(fd, " Self time: %s\n", profile_msg(fp->uf_tm_self));
fprintf(fd, "\n");
fprintf(fd, "count total (s) self (s)\n");
for (int i = 0; i < fp->uf_lines.ga_len; i++) {
if (FUNCLINE(fp, i) == NULL) {
continue;
}
prof_func_line(fd, fp->uf_tml_count[i],
&fp->uf_tml_total[i], &fp->uf_tml_self[i], true);
fprintf(fd, "%s\n", FUNCLINE(fp, i));
}
fprintf(fd, "\n");
}
}
}
if (st_len > 0) {
qsort((void *)sorttab, (size_t)st_len, sizeof(ufunc_T *),
prof_total_cmp);
prof_sort_list(fd, sorttab, st_len, "TOTAL", false);
qsort((void *)sorttab, (size_t)st_len, sizeof(ufunc_T *),
prof_self_cmp);
prof_sort_list(fd, sorttab, st_len, "SELF", true);
}
xfree(sorttab);
}
/// Start profiling a script.
void profile_init(scriptitem_T *si)
{
si->sn_pr_count = 0;
si->sn_pr_total = profile_zero();
si->sn_pr_self = profile_zero();
ga_init(&si->sn_prl_ga, sizeof(sn_prl_T), 100);
si->sn_prl_idx = -1;
si->sn_prof_on = true;
si->sn_pr_nest = 0;
}
/// Save time when starting to invoke another script or function.
///
/// @param tm place to store wait time
void script_prof_save(proftime_T *tm)
{
scriptitem_T *si;
if (current_sctx.sc_sid > 0 && current_sctx.sc_sid <= script_items.ga_len) {
si = &SCRIPT_ITEM(current_sctx.sc_sid);
if (si->sn_prof_on && si->sn_pr_nest++ == 0) {
si->sn_pr_child = profile_start();
}
}
*tm = profile_get_wait();
}
/// Count time spent in children after invoking another script or function.
void script_prof_restore(const proftime_T *tm)
{
scriptitem_T *si;
if (current_sctx.sc_sid > 0 && current_sctx.sc_sid <= script_items.ga_len) {
si = &SCRIPT_ITEM(current_sctx.sc_sid);
if (si->sn_prof_on && --si->sn_pr_nest == 0) {
si->sn_pr_child = profile_end(si->sn_pr_child);
// don't count wait time
si->sn_pr_child = profile_sub_wait(*tm, si->sn_pr_child);
si->sn_pr_children = profile_add(si->sn_pr_children, si->sn_pr_child);
si->sn_prl_children = profile_add(si->sn_prl_children, si->sn_pr_child);
}
}
}
/// Dump the profiling results for all scripts in file "fd".
static void script_dump_profile(FILE *fd)
{
scriptitem_T *si;
FILE *sfd;
sn_prl_T *pp;
for (int id = 1; id <= script_items.ga_len; id++) {
si = &SCRIPT_ITEM(id);
if (si->sn_prof_on) {
fprintf(fd, "SCRIPT %s\n", si->sn_name);
if (si->sn_pr_count == 1) {
fprintf(fd, "Sourced 1 time\n");
} else {
fprintf(fd, "Sourced %d times\n", si->sn_pr_count);
}
fprintf(fd, "Total time: %s\n", profile_msg(si->sn_pr_total));
fprintf(fd, " Self time: %s\n", profile_msg(si->sn_pr_self));
fprintf(fd, "\n");
fprintf(fd, "count total (s) self (s)\n");
sfd = os_fopen(si->sn_name, "r");
if (sfd == NULL) {
fprintf(fd, "Cannot open file!\n");
} else {
// Keep going till the end of file, so that trailing
// continuation lines are listed.
for (int i = 0;; i++) {
if (vim_fgets((char_u *)IObuff, IOSIZE, sfd)) {
break;
}
// When a line has been truncated, append NL, taking care
// of multi-byte characters .
if (IObuff[IOSIZE - 2] != NUL && IObuff[IOSIZE - 2] != NL) {
int n = IOSIZE - 2;
// Move to the first byte of this char.
// utf_head_off() doesn't work, because it checks
// for a truncated character.
while (n > 0 && (IObuff[n] & 0xc0) == 0x80) {
n--;
}
IObuff[n] = NL;
IObuff[n + 1] = NUL;
}
if (i < si->sn_prl_ga.ga_len
&& (pp = &PRL_ITEM(si, i))->snp_count > 0) {
fprintf(fd, "%5d ", pp->snp_count);
if (profile_equal(pp->sn_prl_total, pp->sn_prl_self)) {
fprintf(fd, " ");
} else {
fprintf(fd, "%s ", profile_msg(pp->sn_prl_total));
}
fprintf(fd, "%s ", profile_msg(pp->sn_prl_self));
} else {
fprintf(fd, " ");
}
fprintf(fd, "%s", IObuff);
}
fclose(sfd);
}
fprintf(fd, "\n");
}
}
}
/// Dump the profiling info.
void profile_dump(void)
{
FILE *fd;
if (profile_fname != NULL) {
fd = os_fopen(profile_fname, "w");
if (fd == NULL) {
semsg(_(e_notopen), profile_fname);
} else {
script_dump_profile(fd);
func_dump_profile(fd);
fclose(fd);
}
}
}
/// Called when starting to read a script line.
/// "sourcing_lnum" must be correct!
/// When skipping lines it may not actually be executed, but we won't find out
/// until later and we need to store the time now.
void script_line_start(void)
{
scriptitem_T *si;
sn_prl_T *pp;
if (current_sctx.sc_sid <= 0 || current_sctx.sc_sid > script_items.ga_len) {
return;
}
si = &SCRIPT_ITEM(current_sctx.sc_sid);
if (si->sn_prof_on && SOURCING_LNUM >= 1) {
// Grow the array before starting the timer, so that the time spent
// here isn't counted.
(void)ga_grow(&si->sn_prl_ga, SOURCING_LNUM - si->sn_prl_ga.ga_len);
si->sn_prl_idx = SOURCING_LNUM - 1;
while (si->sn_prl_ga.ga_len <= si->sn_prl_idx
&& si->sn_prl_ga.ga_len < si->sn_prl_ga.ga_maxlen) {
// Zero counters for a line that was not used before.
pp = &PRL_ITEM(si, si->sn_prl_ga.ga_len);
pp->snp_count = 0;
pp->sn_prl_total = profile_zero();
pp->sn_prl_self = profile_zero();
si->sn_prl_ga.ga_len++;
}
si->sn_prl_execed = false;
si->sn_prl_start = profile_start();
si->sn_prl_children = profile_zero();
si->sn_prl_wait = profile_get_wait();
}
}
/// Called when actually executing a function line.
void script_line_exec(void)
{
scriptitem_T *si;
if (current_sctx.sc_sid <= 0 || current_sctx.sc_sid > script_items.ga_len) {
return;
}
si = &SCRIPT_ITEM(current_sctx.sc_sid);
if (si->sn_prof_on && si->sn_prl_idx >= 0) {
si->sn_prl_execed = true;
}
}
/// Called when done with a function line.
void script_line_end(void)
{
scriptitem_T *si;
sn_prl_T *pp;
if (current_sctx.sc_sid <= 0 || current_sctx.sc_sid > script_items.ga_len) {
return;
}
si = &SCRIPT_ITEM(current_sctx.sc_sid);
if (si->sn_prof_on && si->sn_prl_idx >= 0
&& si->sn_prl_idx < si->sn_prl_ga.ga_len) {
if (si->sn_prl_execed) {
pp = &PRL_ITEM(si, si->sn_prl_idx);
pp->snp_count++;
si->sn_prl_start = profile_end(si->sn_prl_start);
si->sn_prl_start = profile_sub_wait(si->sn_prl_wait, si->sn_prl_start);
pp->sn_prl_total = profile_add(pp->sn_prl_total, si->sn_prl_start);
pp->sn_prl_self = profile_self(pp->sn_prl_self, si->sn_prl_start,
si->sn_prl_children);
}
si->sn_prl_idx = -1;
}
}
/// globals for use in the startuptime related functionality (time_*).
static proftime_T g_start_time;
static proftime_T g_prev_time;
/// Saves the previous time before doing something that could nest.
///
/// After calling this function, the static global `g_prev_time` will
/// contain the current time.
///
/// @param[out] rel to the time elapsed so far
/// @param[out] start the current time
void time_push(proftime_T *rel, proftime_T *start)
{
proftime_T now = profile_start();
// subtract the previous time from now, store it in `rel`
*rel = profile_sub(now, g_prev_time);
*start = now;
// reset global `g_prev_time` for the next call
g_prev_time = now;
}
/// Computes the prev time after doing something that could nest.
///
/// Subtracts `tp` from the static global `g_prev_time`.
///
/// @param tp the time to subtract
void time_pop(proftime_T tp)
{
g_prev_time -= tp;
}
/// Prints the difference between `then` and `now`.
///
/// the format is "msec.usec".
static void time_diff(proftime_T then, proftime_T now)
{
proftime_T diff = profile_sub(now, then);
fprintf(time_fd, "%07.3lf", (double)diff / 1.0E6);
}
/// Initializes the startuptime code.
///
/// Must be called once before calling other startuptime code (such as
/// time_{push,pop,msg,...}).
///
/// @param message the message that will be displayed
void time_start(const char *message)
{
if (time_fd == NULL) {
return;
}
// initialize the global variables
g_prev_time = g_start_time = profile_start();
fprintf(time_fd, "\n\ntimes in msec\n");
fprintf(time_fd, " clock self+sourced self: sourced script\n");
fprintf(time_fd, " clock elapsed: other lines\n\n");
time_msg(message, NULL);
}
/// Prints out timing info.
///
/// @warning don't forget to call `time_start()` once before calling this.
///
/// @param mesg the message to display next to the timing information
/// @param start only for do_source: start time
void time_msg(const char *mesg, const proftime_T *start)
{
if (time_fd == NULL) {
return;
}
// print out the difference between `start` (init earlier) and `now`
proftime_T now = profile_start();
time_diff(g_start_time, now);
// if `start` was supplied, print the diff between `start` and `now`
if (start != NULL) {
fprintf(time_fd, " ");
time_diff(*start, now);
}
// print the difference between the global `g_prev_time` and `now`
fprintf(time_fd, " ");
time_diff(g_prev_time, now);
// reset `g_prev_time` and print the message
g_prev_time = now;
fprintf(time_fd, ": %s\n", mesg);
}