Files
ArchiveBox/archivebox/cli/archivebox_update.py
2025-12-28 03:39:59 -08:00

286 lines
8.6 KiB
Python

#!/usr/bin/env python3
__package__ = 'archivebox.cli'
import os
import time
import rich_click as click
from typing import Iterable
from pathlib import Path
from archivebox.misc.util import enforce_types, docstring
@enforce_types
def update(filter_patterns: Iterable[str] = (),
filter_type: str = 'exact',
before: float | None = None,
after: float | None = None,
resume: str | None = None,
batch_size: int = 100,
continuous: bool = False) -> None:
"""
Update snapshots: import orphans, reconcile, and re-run failed extractors.
Two-phase operation:
- Phase 1: Scan archive/ for orphaned snapshots (skip symlinks)
- Phase 2: Process all DB snapshots (reconcile + re-queue for archiving)
- Phase 3: Deduplicate exact duplicates
With filters: Only phase 2 (DB query), no filesystem scan.
Without filters: All phases (full update).
"""
from rich import print
from archivebox.config.django import setup_django
setup_django()
from core.models import Snapshot
from django.utils import timezone
while True:
if filter_patterns or before or after:
# Filtered mode: query DB only
print('[*] Processing filtered snapshots from database...')
stats = process_filtered_snapshots(
filter_patterns=filter_patterns,
filter_type=filter_type,
before=before,
after=after,
batch_size=batch_size
)
print_stats(stats)
else:
# Full mode: import orphans + process DB + deduplicate
stats_combined = {'phase1': {}, 'phase2': {}, 'deduplicated': 0}
print('[*] Phase 1: Scanning archive/ for orphaned snapshots...')
stats_combined['phase1'] = import_orphans_from_archive(
resume_from=resume,
batch_size=batch_size
)
print('[*] Phase 2: Processing all database snapshots...')
stats_combined['phase2'] = process_all_db_snapshots(batch_size=batch_size)
print('[*] Phase 3: Deduplicating...')
stats_combined['deduplicated'] = Snapshot.find_and_merge_duplicates()
print_combined_stats(stats_combined)
if not continuous:
break
print('[yellow]Sleeping 60s before next pass...[/yellow]')
time.sleep(60)
resume = None
def import_orphans_from_archive(resume_from: str = None, batch_size: int = 100) -> dict:
"""
Scan archive/ for orphaned snapshots.
Skip symlinks (already migrated).
Create DB records and trigger migration on save().
"""
from core.models import Snapshot
from archivebox.config import CONSTANTS
from django.db import transaction
stats = {'processed': 0, 'imported': 0, 'migrated': 0, 'invalid': 0}
archive_dir = CONSTANTS.ARCHIVE_DIR
if not archive_dir.exists():
return stats
print('[*] Scanning and sorting by modification time...')
# Scan and sort by mtime (newest first)
# Loading (mtime, path) tuples is fine even for millions (~100MB for 1M entries)
entries = [
(e.stat().st_mtime, e.path)
for e in os.scandir(archive_dir)
if e.is_dir(follow_symlinks=False) # Skip symlinks
]
entries.sort(reverse=True) # Newest first
print(f'[*] Found {len(entries)} directories to check')
for mtime, entry_path in entries:
entry_path = Path(entry_path)
# Resume from timestamp if specified
if resume_from and entry_path.name < resume_from:
continue
stats['processed'] += 1
# Check if already in DB
snapshot = Snapshot.load_from_directory(entry_path)
if snapshot:
continue # Already in DB, skip
# Not in DB - create orphaned snapshot
snapshot = Snapshot.create_from_directory(entry_path)
if not snapshot:
# Invalid directory
Snapshot.move_directory_to_invalid(entry_path)
stats['invalid'] += 1
print(f" [{stats['processed']}] Invalid: {entry_path.name}")
continue
needs_migration = snapshot.fs_migration_needed
snapshot.save() # Creates DB record + triggers migration
stats['imported'] += 1
if needs_migration:
stats['migrated'] += 1
print(f" [{stats['processed']}] Imported + migrated: {entry_path.name}")
else:
print(f" [{stats['processed']}] Imported: {entry_path.name}")
if stats['processed'] % batch_size == 0:
transaction.commit()
transaction.commit()
return stats
def process_all_db_snapshots(batch_size: int = 100) -> dict:
"""
Process all snapshots in DB.
Reconcile index.json and queue for archiving.
"""
from core.models import Snapshot
from django.db import transaction
from django.utils import timezone
stats = {'processed': 0, 'reconciled': 0, 'queued': 0}
total = Snapshot.objects.count()
print(f'[*] Processing {total} snapshots from database...')
for snapshot in Snapshot.objects.iterator():
# Reconcile index.json with DB
snapshot.reconcile_with_index_json()
# Queue for archiving (state machine will handle it)
snapshot.status = Snapshot.StatusChoices.QUEUED
snapshot.retry_at = timezone.now()
snapshot.save()
stats['reconciled'] += 1
stats['queued'] += 1
stats['processed'] += 1
if stats['processed'] % batch_size == 0:
transaction.commit()
print(f" [{stats['processed']}/{total}] Processed...")
transaction.commit()
return stats
def process_filtered_snapshots(
filter_patterns: Iterable[str],
filter_type: str,
before: float | None,
after: float | None,
batch_size: int
) -> dict:
"""Process snapshots matching filters (DB query only)."""
from core.models import Snapshot
from django.db import transaction
from django.utils import timezone
from datetime import datetime
stats = {'processed': 0, 'reconciled': 0, 'queued': 0}
snapshots = Snapshot.objects.all()
if filter_patterns:
snapshots = Snapshot.objects.filter_by_patterns(list(filter_patterns), filter_type)
if before:
snapshots = snapshots.filter(bookmarked_at__lt=datetime.fromtimestamp(before))
if after:
snapshots = snapshots.filter(bookmarked_at__gt=datetime.fromtimestamp(after))
total = snapshots.count()
print(f'[*] Found {total} matching snapshots')
for snapshot in snapshots.iterator():
# Reconcile index.json with DB
snapshot.reconcile_with_index_json()
# Queue for archiving
snapshot.status = Snapshot.StatusChoices.QUEUED
snapshot.retry_at = timezone.now()
snapshot.save()
stats['reconciled'] += 1
stats['queued'] += 1
stats['processed'] += 1
if stats['processed'] % batch_size == 0:
transaction.commit()
print(f" [{stats['processed']}/{total}] Processed...")
transaction.commit()
return stats
def print_stats(stats: dict):
"""Print statistics for filtered mode."""
from rich import print
print(f"""
[green]Update Complete[/green]
Processed: {stats['processed']}
Reconciled: {stats['reconciled']}
Queued: {stats['queued']}
""")
def print_combined_stats(stats_combined: dict):
"""Print statistics for full mode."""
from rich import print
s1 = stats_combined['phase1']
s2 = stats_combined['phase2']
print(f"""
[green]Archive Update Complete[/green]
Phase 1 (Import Orphans):
Checked: {s1.get('processed', 0)}
Imported: {s1.get('imported', 0)}
Migrated: {s1.get('migrated', 0)}
Invalid: {s1.get('invalid', 0)}
Phase 2 (Process DB):
Processed: {s2.get('processed', 0)}
Reconciled: {s2.get('reconciled', 0)}
Queued: {s2.get('queued', 0)}
Phase 3 (Deduplicate):
Merged: {stats_combined['deduplicated']}
""")
@click.command()
@click.option('--resume', type=str, help='Resume from timestamp')
@click.option('--before', type=float, help='Only snapshots before timestamp')
@click.option('--after', type=float, help='Only snapshots after timestamp')
@click.option('--filter-type', '-t', type=click.Choice(['exact', 'substring', 'regex', 'domain', 'tag', 'timestamp']), default='exact')
@click.option('--batch-size', type=int, default=100, help='Commit every N snapshots')
@click.option('--continuous', is_flag=True, help='Run continuously as background worker')
@click.argument('filter_patterns', nargs=-1)
@docstring(update.__doc__)
def main(**kwargs):
update(**kwargs)
if __name__ == '__main__':
main()